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On a certain class of finite groups with two
independent generators

By K. R. YACOUB (Cairo)

A group G may have several independent generators; but it is completely
defined, as an abstract group, by means of any set of abstract generators
and all the independent relations by which they are connected.

For a finite group with two independent generators certain permutations
(or substitutions [1]) are however sufficient for the determination of the
structure of the group [2]. In order to be precise, let G be such a group
and let a, b (of orders m and n respectively) be its independent generators.
Then [2], associated with G, there corresponds two permutations :x and o
such that

M @b =b""a" x € [n), y € [m]

where st is semi-special on [2] and ¢ on [m].
By means of these two permutations, the product of any two elements
in G can be easily formed according to the rule

r u .y r ¥z’ 0%y _y
b'a’-b"a’ =b"b"" a* "a’

i. e. according to the rule
b a'- b a" = b g

For this reason, the structure of the group G depends entirely on the deter-
mination of the two permutations sz and o.
In particular, if both -x and ¢ are the identity permutations i. e. if

-

aax=x (mod n) and ¢y=y (mod m); then (1) implies at once
a'b"=b"a.
In this case, every element of {@} commutes with every element of {4} and

the group G is, in fact, the direct product of {a} and {b}. The defining
relations of G are simply

G={a,b; a"=0b"=e, ab=ba)}.
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This is the simplest type of a finite group with two independent generators.
Other types do, in fact, exist; but their structure properties are not so simple.

However, the structure of the group G seems to be of particular interest
when one of the permutations -x and o is linear i. e. when sz, say is defined
by stx=ux (mod n) for some number u which is prime to n. It is the object
of the present note to describe in a simple way the structure of all such groups.

In §1, we collect together some unrelated lemmas mainly for subseq-
uent use. The proofs are omitted and the reader if interested may be referred
to a previous paper by the author ([3], § 2).

§ 1. Some fundamental results

Lemma 1. For all x € [n] and y € [m]
am b,-,- - b:ram’ aybn s b“a“.
Lemma 2. Let k be the order of -t (which may be linear or not). Then
(i) k divides m,
(ii) @ number s prime to m/k exists such that
a b= ba*, ks" =k (mod m)
where H is the highest common divisor of all the differences v—u, u and »
being any numbers in the principal cycle of m;
(iii) a"b" = b"a*.
- Lemma 3. Let -t be a linear permutation, say tx=ux (modn) and
let (u—1,n)="h. Then
ks" =k (mod m), a*b"=b"a".

For in this case, the principal cycle of s is (1,u,4%...,u*"); thus
the H of the previous lemma is #—1 and the lemma follows at once if we
remark that a“b"—b"a" (see Lemma 1).

Now, since st is semi-special; then by definition the permutation 7,
defined by wt,x=m(x+y)—zy (modn) is a power of sz. In particular, if
st is linear then s, =z forevery y ([1], Theorem 4.10). Accordingly, we have

the following lemma.

Lemma 4. If 7t is a linear permutation, then
aby gt b;'ryaf.'rly)*l

for a suitable r(y) which depends on y (see [3], Lemma 7).
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§ 2. Description of the problem

In this investigation, we deal with the case in which : is linear. Our
aims are to (i) describe all the corresponding groups in terms of some simple
parameters and (ii) prove the existence of such groups for permissible para-
meter values.

We deal seperately with the permutations ax=x (modn), mx=ux
(mod n) where (u—1,n)=1 and finally with the permutations ax=ux
(mod n) where (u—1,n)=1.

§ 3. The permutation :7x=2x (mod n)

Theorem 1. If there is a group G corresponding to the permutation -,
then it has the defining relations

(2) G={a,b; a" =0"=e, ab=0>a’}
where
3) r'=1 (mod m).

Conversely if r is any number satisfying (3), then the group G gener-
ated by a and b with the defining relations (2) is of the desired type.
The proof is direct and is omitted.

§ 4. The permutation :zx=ux (mod n) where (z—1,n)—1

Theorem 2. Let u be any number prime to n such that (u—1,n)=1.
If there is a group G corresponding to the linear permutation mx given by
aax=ux (mod n), then it has the defining relations

(4) G={a,b; a"=b"=e, ab=0b"a)
where
(5) u" =1 (mod n).

Conversely, if u and u—1 are both prime to n and if m is any integer
such that (5) is satisfied; then the group G generated by a and b with the
defining relations (4) is of the type desired.

PrROOF. Assume the existence of the group G. Let &k be the order of
u modn i.e. k is the least positive integer such that #*=1 (mod n). Then
it is evident that k is the order of =2 and by Lemma 2 (i), m is a multiple
of k; this confirms (5).

Moreover, since («—1,n)=1; then by Lemma 3
(6) a*b=ba".

D6
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Next, by Lemma 4 (with y=1) we have

ab=b"a""" for a suitable number r.
Then by induction and by u.sing (6), we find that
ab”*=b"a™".
Now, if we take x=n and use the second of Lemma 1 we get
(7 nkr=0 (mod m).

We remark that (7) is satisfied by kr=0 (mod m); in this case G has the
defining relations

G={a,b; a"=0b"=e, ab="b"a; u™=1 (mod n)}.

If kr#£0 (mod m), the group G which we denote now by G, has the defining
relations

Gr . {a’ b; am =bn =e’ ab =buakr‘+l’ aﬁb :bak; HmE [ (mOd n)}.

The groups G and G, are however isomorphic. This is easily seen if the
defining relations of G are written in the form¥*)

G={¢,d; c"=d"=e,cd=d"c; u"=1 (mod n)}.
Then the isomorphism between G and G, is established by the correspondence
a«<c; b+«rdc

where x is defined by x(u—1)=1 (mod n).

Thus, in all cases G has the defining relations (4) and (5).

For the converse, let H be the system of all formal pairs [x,y] where
x=0,1,...,n—1 and y=0,1,...,m—1. In this system define multiplica-
tion by means of the formulae

[x’ Jv’] [x’! ]"] —_ [x"r y"]
where X" =x-+u'x’ (mod n); y’'=y-+y (mod m).
This multiplication is associative, for
[, Y, Y17, 071 =[x y] X+ a X7, y 4 y7]
L [x-{—u-'*x'-{-u”‘*”'x", y+yf+ynl
=[x+uwx,y+y]x"y']
=l Y1 YT X7, 07)-
Also [0,0] is a unit element and [—xu¥, m—y] is the inverse of [x,y]
where the value of u-v can always be reffered to a positive exponent by

* This process merely replaces the generators a and b of G by ¢ and d respectively.
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means of the relation #*=1 (mod n) i.e. by adding a multiple of ¥ to the
exponent.
Moreover if a'=[0, 1] and " = [1, 0] then it is easy to see that

b =[x, 0], @’ =[0,y], b"a"=[x,y].

Thus every element of H is uniquely of the form &"a’””. The order of a’ is
m and that of &" is n; therefore the order of H is mn. Thus corresponding
to the defining relations of G we have

aam e bm b e:

where ¢’ denotes the unit element [0, O].

Also a0 =0, 1]1[1,0]=]a, 1},
and b a = [u,0][0, 1]= [, 1].
Thus

ab=b"d.

From this, we see first that a@" induces the permutation :r described in the
theorem and further that H is a homomorphic image of G. But as the order
of H is mn and that of G is at most mn; then G and H have the same
order and are isomorphic. Hence G is the desired group.

§ 5. The permutation ztx=ux (modn) where (u—1,n)=+1

Theorem 3. Let u be any number prime to n such that (u—1, n) =1
and let k be the order of u mod n and (u—1,n)=h. If there is a group G
corresponding to the linear permutation given by swtx=ux (mod n); then it
has the defining relations

(8) G=1a,b; a"=0b"—e, ab=0b"ad""", d"b—=ba"")
where
9) m=0 (mod k), ks" =k (mod m);
(10) Nkrf(h)=0 (mod m), n= Nh
k-_—_l'
(11) kszk+kr%f(u‘) (mod m)

and where f(x) is defined mod f;:— by
krf(x)=kr(1+s+++-+s"") (mod m).
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PrROOF. Assume the existence of the group G. Then by Lemma 2, &
divides m; this proves the first of (9). Again by the same lemma

(12) a*b=ba*
for some number s which is prime to %
Moreover, by Lemma 3
(13) ks"=k (mod m)
which proves the second of (9); also
ab =ba".
Now if we use (12), (13) and remark that & divides u—1 we obtain
(14) ab"=b"d".
Next, by Lemma 4 (with y=1) we have
(15) ab=b"d""

for a suitable number r.
Then by an induction process and by using (14), we get

ab® = blr.ral‘r(1+s+"'§—s-t'l) o 1

which, in the notation of the theorem, becomes

(16) ab” = b"qa"",

For x=~h, we have

(17) ab" = buhakrﬂhfwl'

But since a* and & commute, then by induction we can show that
(18) abyh = byuh aykrf(h)+1.

Now if, in (18), we put y=N and remark that ab"= b"a; we get

Nkrf(h)=0 (mod m)
which proves (10).
Again by repeated application of (15) and by using (16), we have

azb i oyl abrrak.-+l LS bfﬂakr‘{I+|r'(u)}+2

and generally

E |
a'b—=0b"d" 1._2; fd)+ 2
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If we take z=k and compare with (12), we get

ks=kr gf(u‘) +k (mod m);

this proves (11). Thus we have shown that (8), (9), (10) and (11) are necessary.

For the converse, let P be the set of classes of formal pairs [x, y] where
x is taken mod n and y mod m. The pairs [x,y] and [x’,y’] are to be
considered identical when x=x" (modn) and y=y)" (modm). Let H be
the group of permutations generated by the permutations « and g where

(Z[x,y]= [x3y+]]
Blx, ky+ 2] =[x+w, kys+ krb(z)+ 2]
where z=0,1, ..., k—1 and

z=1

kr6(0)=0, kr6(2)=kr Z f(u’) (mod m) for z=-0.

We show first that # is, in fact, a permutation. For if

(19) X' +u'=x-+wu (modn)
and
(20) kys+kr0(2") 42 =kys+ kr6(z) 4z (mod m);

then from (20) (since k divides m and z,2'<k) it would follow that 2’ =2
and then from (19) x’=x (mod n). Consequently from (20) we deduce
ky's=kys (mod m) or equivalently k) =ky (modm) since s is prime

to % This shows that & is actually a permutation.

The proof of the converse is rather long and is affected by means of
the following lemma.

Lemma 5. The functions f(x) and 6(2) satisfy, in virtue of (9) and
(11) the following relations:

(21) krf(u’)=krf(u"-")-f(u) (mod m)
(22) krb(z+1)=kr+krf(u)-6(z) (mod m) O=2<k—1
(23) ks—k=kr+ krf(u)-6(k—1) (mod m)

ProoF. For (21), we have by the definition of f(x)
krf(u)=kr(1+s+s4 - +s'—1)=

=kr(14+s+s>+-.-- +s"“"") (1 45 4 2 e sM-D) mod m).
But since & divides u—1 and ks,=k (mod m) (see (9)); then it would
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follow that ks*=ks (mod m) and consequently that ks" = ks (mod m) for
all y and 2. Therefore

kff(u")Ekr(l—FS—}—sg-}-...+s!:"'1—l)(l+s+s~3+”.+s,,_|)z

=krf(u'-")-f(u) (mod m)
which proves (21).
Next: For (22), we have by the definition of 6(2) for 0 =z<k—1,

kr6(z+1)=kr if(u") =
=kr+ kré‘f(u‘) =

=kr+ krf(u)- ;l f@)= (by (21)),

=kr+krf(u)-6(z) (mod m);
this proves (22).
Finally, for (23) we have

krf(u)-0(k—1)+ kr=krf(u) Sf(u‘) +kr=
=kr Z:’f(u"*') +kr=

=kr 2 f(u)= (by using (21))
= ks—k (mod m) in virtue of (11);

this completes the proof of the lemma.
We return now to the proof of the converse of the theorem. By direct
calculation, we can show that «™ =& wehre & denotes the identity permutation.
Moreover

82[x, ky + 2] =[x+ 2w, kys* + kr(1 4 5)0(2) +- 2]
and generally
Fx, ky+ 2l =[x+ iw, kys'+kr(1 s+ 451)6(2) +- 2]
which, by using the notation of f(x), gives
(24) Bix, ky + 2] =[x +iw, kys'+ krf(i)-6(2) + 2].
Now if we take i=h and remark that ks"=k (mod m), we deduce
BIx, ky+2) = [x+ hu, ky + krf(R)6(2) + 2]
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which, by induction on the multiples of Ak, gives at once
S [x, ky+z] =[x+ jhw, ky+jkrf(h) - 6(z) + z].

Taking j= N and remembering that Nkrf(h)=0 (mod m) (see (10)), we

find that
AN x, ky+2] =[x, ky+2]

showing that §"—e. Furthermore
efx, ky+z]=[x+ v, kys+ kr6(z+ 1)+ 2+ 1] for z<k—1

(25) and
af[x, ky+k—1]=[x+1, (ky+ k)s].

Again if we take i=u in (24) and remember that ks“== ks (mod m) we get
8'[x, ky + 2] =[x+ u**', kys+ krf(u)- 6(2) + 2]
and consequently
g a1 x, ky+ 2] =[x+ wt, kys+ krf(u)-0(z)+ kr +z+1].

Which on comparing with (25) and using (22) and (23) goives

“}?= ﬁuak +1
. Similarly
Sim @ B[x, ky+ 2] =[x+, k(y+ 1)s+ kr6(2) + 2]
and
and B |x, ky+ 2] =[x+, kys+ kr6(2) + z + ks].

Hence &g = pa’s.
Thus according to the defining relations of G, we have

" =f"—¢af= ﬁ"a"'” « ,3 ,Sa“.

¢ = =gef=a¢ T,

Hen

From this, we see first that H is a homomorphic image of G. Furthermore
no power of {«} except the unit element is in {#} and vice versa. But as
the order of H is mn and that of G is at most mn, they have the same
order and are isomorphic. Hence G is the desired group. This completes
the proof of the theorem.

In previous notes, the author had come across some special cases of
this theorem. We mention here the cases: n—=4 (Cf. [4], Theorem 3); n—8
(Cf. [5], Theorems 3,5) and n=p> where p is an odd prime (Cf. [3], Theorem
5). The case n=—4 will be worked out as an illustrative example.

Special case: Let n=4; in this case u =3, h=— k= N-2. Moreover
the function f(x) which appears in conditions (9), (10) and (11) is now
defined by

(26) 2rf(x)=2r(14+s-4++-+s""), (mod m).
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Condition (9), in this case, requires that m is even and also that
(27) 25*=2 (mod m).

Next, condition (10) reduces to 4rf(2)==0 (mod m) which by using (26)
gives at once
(28) 4r(1+45)=0 (mod m).
Finally, condition (11) implies
25=2+42r{1+4f(3)} (mod m)
=2+42r(2+s+s) (mod m), by using (26),
=2-+4+2r(3+45s) (mod m), in virtue of (27),
=2+4+4r+2r(1 +4s) (mod m)
=2+4r—2r(1+s) (mod m), in virtue of (28).
Hence
(29) 2(1+r)(s—1)=0 (mod m).

Thus besides the condition imposed on m conditions (27), (28) and
(29) must also hold. In this case, G has the defining relations

G={a, b;a*—=b0=¢, ab=0"a"", %D = ba™)
where m is even and
25°=2, 4r(14s)=0, 2(1 4+r)(s—1)=0 (mod m)
(Cf. [4), Theorem 3).

In a similar manner we can check up the special cases mentioned above
together with others.

§ 6. Conclusion

Theorems 1,2 and 3 describe all the finite groups, with two independent
generators, when the permutations induced by one of the generators on the
powers of the other are linear.

However, in some particular cases no other group can be furnished. This
is the case when the semi-special permutations on [n] are all linear. Such
cases arise for example when n=p is an odd prime (Cf. [1] Corollary 4. 13),
or when n==pq for distinct odd primes p and ¢ with p<gq, say, and p
not dividing ¢—1 (Cf. [6] Theorem 4;6). The above theorems, thus, show
themselves fruitful as they give a complete description of the groups in such
cases.
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