A comment on E. Fried’s Galois modules

By DANIEL ZELINSKY (Evanston, Il1.)

In [2], E. FRIED examines the following situation: K is a field, I" is a
finite-dimensional algebra over K and L is a finitely generated right ™-module
satisfying the following conditions
(1) If M=Homg(L, L) is the endomorphism ring of L, Then I'M — M.

(2) If J is any right ideal of I, d(JM)/d(M)=d(])/d(I"),

where d denotes dimension over K. The aim of this note is to show (in
Theorem 2 and its corollaries) that these modules L can be characterized
as special injective modules which are uniquely determined by their dimen-
sions, and that L= I’ satisfies (1) and (2) if and only if /" is a Frobenius
algebra (cf. [1]).

We shall assume throughout that /" is an algebra with unit and that all
modules are unitary, so that (1) is automatic. It is probably possible to
avoid this assumption by judicious adjunction of a unit.

If M is any /™-module and m is a nonnegative integer, we shall use mM
to denote the direct sum of m isomorphic copies of M. In these terms we
define a left /-module M to be semifree (called ,regular” by NAKAYAMA [3])
if mM>~nlI for some nonzero m and n (=~ means isomorphism of left
I'-modules). If m=1, M is free. We shall call a left /-module M a Fried
module if M satisfies (2). The following two lemmas are then obvious:

Lemma 1. The left I'-module I' is both semifree and a Fried module.

Lemma 2. [f mM>~nN then M is a Fried module (resp. semifree) if
and only if N is a Fried module (resp. semifree).

Theorem 1. M is a Fried module if and only if M is semifree.

PrOOF. If M is semifree, then mM=>=nl" and the fact that M is a
Fried module follows immediately from Lemmas 1 and 2.

Conversely, consider first the case where I is a simple algebra. Then
I" has a unique simple (= irreducible) left module V and every finitely
generated /-module is isomorphic to some nV. Thus every finitely generated
module is semifree, by Lemmas 1 and 2.
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Next, if I" is semisimple, write I'= J,&---@ /. where each J; is a
simple algebra. Then M= & /M and, by the previous case, m JiM~n,J;
for some m; and n;. But d(I")d(J:M)=d(M)d(J:) since M is a Fried module.
Thus n;/m;=d(M)/d(I") is independent of i.

If m is the least common multiple of the m;, write n;/m;= n/m; then
mM=EmJM= T (m/m)ym;JiM>=F(m/m)n;J;=Enfi=nl, so that M is
semifree.

Finally, if I" has a radical R, we consider the semisimple algebra /'/R.
If M is a Fried module over I', then M/RM is a Fried module over I'/R, for
if J/R is any right ideal in I"/R (/ a right ideal in /" containing R), then

d((J/R)[M/RM))/d(M/RM) = d(JM/RM)/d(M/RM) —
=[d(JM)—d(RM)]/[d(M)—d(RM)] =
[d(JM)/d(M)—d(RM)/d(M))/[1—d(RM)/d(M)] =
[d(/)d(I")—d(R)/d(I"))/[1—d(R)/d(I")] =d(]/R)/d(I'|R).

Thus M/RM is semifree; say m(M/RM)~>~n(I''R). Let M'=mM and
N=nI. Then NNRN>~M'/RM’'. This gives a I'-homomorphism « of N to
M/LM'. Since N is free, « can be lifted to a homomorphism «” of N to M.
Then «'(N)+ RM' = M’, whence, by usual techniques, «' (N)+4R*M =M,
«(N)= M. Since M’ is a Fried module,

d(M/RM') = d(M)—d(RM’) = d(M')(1—d(R)/d(I")) = d(M)d(I'"/ R)/d(T").
Similarly,
d(NYd(I'/R)/d(") = d(N/RN) = d(M'/RM’) = d(M)d(I"/R)/d(I"),

which proves d(N)=d(M’). This, paired with «'(N)=—= M shows that « is
an isomorphism, mM=—M ~N=nl", M is semifree.

Corollary. If M and N are Fried modules, then M is isomorphic to N
if and only if d(M)=—d(N).

ProOOF. Write M, N and /" as direct sums of indecomposable modules:
M=E m:l;, =@nl;, '=®cili. Since mM=>~m'I’ and nN=>=n'I'
by Theorem 1, we have mm;=m’'c; and nn;= n’c; by the Krull—Schmidt—
Remak theorem. Thus m;=(m’'m)c; and n;= (n'/n)c;. But d(M)=d(N)
implies m’/m==n’/n, so m;==n; and M~ N.

Now to return to FRIED’s context, if L is a right /-module and
M=Homg(L, L), let L’ be the dual Homg(L, K) of L. The transposes of
elements of M act on L’ in the usual way, making L" a left M-module and
hence also a left /'-module. Moreover, the left (M—, hence I'—) module M
is isomorphic to a direct sum of copies of L', so M is a Fried module if
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and only if L’ is. Translating Theorem 1 into conditions on dual modules,
we have

Theorem 2. The following are equivalent
(3) A right I'-module L satisfies (1) and (2).
(4) The dual L'=Homg(L,K) of L is a semifree left I'-module, i.e.,
mL >~nl" as left I'-modules.
(5) There exist nonzero integers m and n such that mL ~nHomg(l', K) as
right I'-modules.
(6) If L=&I11; and Homg(I',K) =& c/l; with nonisomorphic, indecom-
posable I, then l./l;=c!/c; for all i, j.

Corollary 1. If two right I'-modules L, and L, satisfy the conditions of
Theorem 2, then Ly~ L, if and only if d(L,)= d(L2).

This Corollary is proved exactly as is the Corollary to Theorem 1; or
it can be reduced to that Corollary by taking duals.

Corollary 2. The right I'-module I’ satisfies the conditions of Theorem
2 if and only if I' is a Frobenius algebra; i.e., the right module I" (which
gives the right regular representation of I') is isomorphic to Homg(I', K)
(which gives the left regular representation).

ProOF. The ,,if” part is clear from Theorem 2, (5). The ,only if”
follows from Corollary 1.

Thus the major theorem of [2] (Theorem 7) can be translated into the
assertion that if /" is a Frobenius algebra, if a right /-module L is the
dual of a semifree left module, and if d(L)=d(I"), then L ~1I". The proof
of the normal basis theorem then consists in showing that the group algebra
is a Frobenius algebra [2, Theorem 9] (cf. also [1]), that the field L is the
dual of a semifree module over the group algebra of the Galois group [I,
Theorem 10] and that d(L) =d(I").
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