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On the diophantine equation xp−1 + (p − 1)! = pn

By MAOHUA LE (Zhanjiang, Guangdong)

Abstract. In this paper we prove that the equation xp−1 + (p − 1)! = pn, x,
n ∈ N, p an odd prime, has only the solutions (x, p, n) = (1, 3, 1), (1, 5, 2) and (5, 3, 3).
The above result completely solves a problem of Erd�os and Graham.

1. Introduction

Let Z,N,Q,P be the sets of integers, positive integers, rational num-
bers and odd primes, respectively. Erdös and Graham [5] asked if the
equation

(1) xp−1 + (p− 1)! = pn, x, n ∈ N, p ∈ P,

has only finitely many solutions (x, p, n). In [1], Brinzda and Erdös

solved this problem. Simultaneously, they notice that by using the result
of lower bounds for linear forms in two logarithms due to Mignotte and
Waldschmidt, it is possible to obtain some sharper bounds for the solutions
of (1). Dong [4] in his review on the paper of Brindza and Erdös

[1] calculated that all solutions (x, p, n) of (1) satisfy p ≤ 3.8 · 1025 and
n ≤ 1.04 · 1071. In this paper we prove the following result∗:

Theorem. The only solutions of the equation (1) are (x, p, n) =
(1, 3, 1), (1, 5, 2) and (5, 3, 3).

Supported by the National Natural Science Foundation of China.
∗Editorial remark : The result of the present paper was presented also by Kunrui Yu
at the Symposium on Diophantine Problems (Univ. of Colorado, Boulder, 2 June 26 –
July 1, 1994). However according to our knowledge K. Yu’s paper did not yet appear.
Mathematics Subject Classification: 11D61, 11J86.
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2. Lemmas

Lemma 1. The only solutions of the equation (1) with x = 1 are
(x, p, n) = (1, 3, 1) and (1, 5, 2).

Proof. This is an early result by J. Liouville (see [2]).

Lemma 2 ([8]). The only solution of the equation

(2) X2 + 2 = Y Z , X, Y, Z ∈ N, Z > 1,

is (X, Y, Z) = (5, 3, 3).

Lemma 3 ([6]). The equation

Xp − Y p = m! , X, Y, m ∈ N, p ∈ P,
has no solutions (X, Y, m, p).

For any prime p and any a/b ∈ Q \ {0} with gcd(a, b) = 1, we denote
by ordp a/b the order to which p divides |a/b|.

Lemma 4 ([3, Théorèm 2]). Let p be a prime, and let a1, . . . , an ∈ Z
with ai ≡ 1 (mod p) for i = 1, . . . , n. If Λ = ab1

1 · · · abn
n − 1 6= 0 for some

b1, . . . , bn ∈ Z, then we have

ordp

(
ab1
1 · · · abn

n − 1
)

<

(
(2p− 1) log p

2p− 2

)n−2

9n+4n3n+5(log A1) · · · (log An)Z0G0,

where Ai = max(p, |ai|) (i = 1, . . . , n),

Z0 =

{
2(log 2)(log 8n),

4(log p)(log 3np),
G0 =

{
max

(
(log 2)(log B), 6nZ0

)
, if p = 2,

max
(
(log p)(log B), 5nZ0

)
, if p > 2,

where B = 7 max(|b1|, . . . , |bn|)/10(n + 1).

3. Proof of the Theorem

By Lemma 1, it suffices to prove that the only solution of the equation
(1) is (x, p, n) = (5, 3, 3) with x > 1.

Let (x, p, n) be a solution of (1) with x > 1. Write p− 1 = qα0
0 qα1

1 · · ·
qαs
s , where q0 = 2, q1, . . . , qs are distinct odd primes and α0, α1, . . . , αs ∈
N. If s > 0, then xp−1−1 ≡ 0 (mod qα1+1

1 ) and (p−1)! ≡ 0 (mod qα1+1
1 ),
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since xp−1− 1 ≡ 0 (mod p− 1) and (p− 1)! ≡ 0 (mod (p− 1)2/2). There-
fore, we see from (1) that pn − 1 ≡ 0 (mod qα1+1

1 ). This implies that
n ≡ 0 (mod q1). Let X = pn/q1 and Y = x(p−1)/q1 . Then we have

(3) Xq1 − Y q1 = (p− 1)! , X, Y ∈ N.

By Lemma 3, (3) is impossible. So we have s = 0, p = 2α0 + 1 and p is a
Fermat’s prime. Hence, p = 22m

+ 1, where m ∈ Z with m ≥ 0.
If m = 0, then p = 3 and (X, Y, Z) = (x, 3, n) is a solution of the

equation (2) with Z > 1. By Lemma 2, the only solution of the equation
(1) with x > 1 and p = 3 is (x, p, n) = (5, 3, 3).

If m = 1, then p = 5 and

(4) x4 + 24 = 5n, x, n ∈ N, x > 1,

by (1). Since 3 is a quadratic nonresidue mod 5, we have 2 | n. Then from
(4) we get 5n/2 + x2 = 6, 5n/2 − x2 = 4 and (x, n) = (1, 1). Therefore, (4)
is impossible.

If m ≥ 2, then p ≥ 17 and

(5) ord2(p− 1)! =
∞∑

i=1

[
22m

2i

]
= 22m−1 + · · ·+ 2 + 1 = p− 2.

Since xp−1−1 ≡ 0 (mod 22m+2) and p−2 = 22m −1 > 2m +2, (1) implies
that pn − 1 ≡ 0 (mod 22m+2) and n ≡ 0 (mod 4). So we have

(6)
pn/2 + x(p−1)/2 = T1, pn/2 − x(p−1)/2 = T2,

T1T2 = (p− 1)!, T1, T2 ∈ N.

Let

A(p) =
∏

q∈P, q≡1 (mod 4),
q<p−1, qα‖(p−1)!

qα, A(p) =
(p− 1)!
A(p)

.(7)

Notice that 2 - px, gcd(x, p) = 1 and n/2 ≡ (p−1)/2 ≡ 0 (mod 2). We see
from (6) and (7) that gcd(T1/2, A(p)) = 1. Hence, we obtain T1 ≤ 2A(p)
and

(8) x <
(
A(p)

)2/(p−1)
.

Since gcd(p, (p−1)!) = 1, every prime factor q of x satisfies q ≥ p+2.
On the other hand, by Stirling’s theorem, we have

(9) (p− 1)! <
√

2π(p− 1)
(

p− 1
e

)p−1

e1/12(p−1) .
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Since A(p) < (p− 1)!/2p−1 by (5), we get from (8) and (9) that

p + 2 ≤ x <
(
A(p)

)2/(p−1)
<

(
(p− 1)!
2p−1

)2/(p−1)

(10)

=
1
4
(
(p− 1)!

)2/(p−1)
<

p2

4e2

(
1− 1

p

)2 (
2π(p− 1)

)1/(p−1)
e1/6(p−1)2 < p2.

Therefore, by (1), (9) and (10), we have

(11)

p− 1 ≤ n =
log

(
xp−1 + (p− 1)!

)

log p

=
1

log p

(
(p− 1) log x +

2(p− 1)!
2xp−1 + (p− 1)!

×
∞∑

j=0

1
2j + 1

(
(p− 1)!

2xp−1 + (p− 1)!

)2j
)

<
1

log p

(
(p− 1) log x +

4(p− 1)!
2pp−1 + (p− 1)!

)

<
p log x

log p
< 2p.

By Lemma 4, if p > 2100, then from (10) and (11) we get

(12)
ord2

(
pn − xp−1

)
= ord2

(
pnx−(p−1) − 1

)

< 214312(log 2)2(log p)(log x)
(

log
7n

30

)
< 8 · 109(log p)3.

Since ord2

(
pn − xp−1

)
= ord2(p − 1)! by (1), the combination of (5) and

(12) yields
p− 2 < 8 · 109(log p)3,

whence we conclude p < 252, a contradiction. Therefore, p < 2100 and
m < 7. By [7], it suffices to consider the cases p ∈ {17, 257, 65537}.

Since A(17) = 53 ·13 and A(257) = 562 ·1320 ·1715 ·298 ·376 ·416 ·534 ·614

·733·892·972·1012·1092·1132·137·149·157·173·181·193·197·229·233·241·249,
we have

(
A(17)

)1/8
< 3 and

(
A(257)

)1/128
< 25. Hence, by (8) and (10),

equation (1) has no solution (x, p, n) if p ∈ {17, 257}.
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If p = 65537, then we have p ≡ 2 (mod 257) and 2n ≡ pn ≡ xp−1

≡ 1 (mod 257). Since 28 ≡ −1 (mod 257), we get n ≡ 0 (mod 16).
Therefore, by (9) and (10), we obtain

(p− 1)59640 > (p− 1)! = pn − xp−1 =
(
pn/16

)16

−
(
x(p−1)/16

)16

=
(
pn/16 − x(p−1)/16

)(
p15n/16 + p14n/16x(p−1)/16 + · · ·+ x15(p−1)/16

)

> 16x15(p−1)/16 ≥ 16(p + 2)61440,

a contradiction. Thus, the only solution of equation (1) with x > 1 is
(x, p, n) = (5, 3, 3). The proof is complete.

Acknowledgements. The author would like thank the referee for his
valuable suggestions.
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