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The solution of a minimum problem
By T. BALOGH (Debrecen)

1. In his papers [1] and [2] G. SZEGO solves among others the follow-
ing problem: Let f(x) be a nonnegative (L) integrable function defined on
the interval (0, 27¢), for which

in

i~

A) =5, | Fx)dx>0

holds.
Let moreover « be an arbitrary complex number. Suppose p.(z)=

L
= kz,: ax2* runs through all polynomials of degree n, for which

(1) Pu(@) =1
holds. What will then be the lower limit of the integrals

2_11_[ 1p" (Z)i‘-’f(x)dx (Z = e[,f).

SzeGcO has proved that when

&
T 4 > ;
27 J P2 f()dx (z2=e"),

0
while p.(z) runs through all the polynomials of degree n satisfying (1), then

1
Su(e, @)’

Moy (a, f) — Min

Hn (ar f) —
and the minimizing polynomial is
p" (Z) e F'l (“l f)sl't (al Z):

where s,(e, 2)= > ¢, (@)¢,(2). The polynomial ¢,(z) (»=0,1,...,n)
=0
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occurring in this expression is the » -+ 1-th member of the system of poly-
nomials, which we get by orthonormalizing the trigonometrical system

1,6, ..., en

by Schmidt’s procedure with respect to the weight function f(x).

As is known, the above results play an important role in the theory of
stochastic processes. (See e. g. [3].)

The generalization of the theory of stochastic processes to matrix-valued
variables made it necessary to extend the above result of SzeGO to quad-
ratic matrices. This generalization is contained in Theorem 3. Theorems 4,
5 and 6 can also be regarded as generalizations of corresponding theorems
of SzeGo.

2. Here we give a brief survey of the notations and well-known matrix-
theoretical concepts used throughout the paper.

The zero matrix resp. the unit matrix of order r (we say also of type
rxr) will be denoted by (0), and E, respectively. The conjugate transpose
of a matrix A of order r will be denoted by A®, and the inverse of the
regular matrix A by A

The matrix A of order r will be said to be positive definite, positive
semidefinite resp. Hermitian, if for any row-vector z=(z,2,...,2,) the
condition

zAz' >0, zAz'=0 resp. A=A’
holds.
A matrix A(x) will be said to be bounded or continuous, if all its

b

elements are bounded or continuous. By the integral ]‘A(x)dx of a matrix

A(x) we understand the matrix formed of the integralé of its elements.
By the eigenvalues 4, 4s,...,4, of the matrix A of order r we under-
stand the roots of the equation

Det (AE,—A) =0.
By the spur of the matrix A=(ax) (L,k=1,2,...,r) of order r we
understand the sum of the elements standing in the main diagonal, i.e.
Sp A = Zﬂ;.-;.- "
=1

r r

As is known, > ay— > A. The following relations clearly hold:
k=1 k=1

a) Sp(aA+bB)=—aSpA-+bSpB,

where a and b are arbitrary complex numbers,
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b) Sp AB=SpBA,
¢) SpU'AU=SpA
where U is an arbitrary regular matrix of order r.
Any Hermitian matrix A of order r can be represented in the form

(2) A=U4U",

where UU*=E,, and 4 is the diagonal matrix containing the eigenvalues

of A. The representation (2) is said to be the canonical representation of A.

By the square root of the positive semidefinite Hermitian matrix A of order
1

r we understand the matrix A which can be obtained from the canonical
representation of A, by replacing the diagonal matrix 4 containing the
eigenvalues by the diagonal matrix containing the positive square roots of the
eigenvalues.

3. Let L. denote the totality of the matrices of type r>r defined on
the interval (— s, -¥), measurable and with integrable square in the sense of
Lebesgue. Let moreover U denote the totality of the square matrices of order
r which can be built of complex numbers. If on the set L addition is to mean the
usual matrix addition, while by multiplication we understand matrix multipli-
cation, then — as it can easily be seen — these operations satisfy conditions
1) a) and b) of § 2 in [4], i. e. L, forms a linear space.

To any two elements f(x) and g(x) of L. we make correspond the matrix

E|

(£ &) =5 | fx)e" (Wdx

;4.

from 9. This correspondence satisfies conditions (8) in [4], and therefore
we call the integral (f, g) the inner product of the elements f(x) and g(x).

In the metrized linear space L., we understand by the norm of f(x)
1

the matrix |f| =(f,f)?, and in case this is regular, we call the matrix
| £/ "'£(x) the normed element arising out of the element f(x).

4. Definition 1. We call polynomial matrices the expressions of the form
P.(2) =2 A2
k=0

where 2 is a complex variable, n a nonnegative integer, and A, (k=0, 1,...,n)
an element from M.

If at least one element of the matrix A, is different from zero, then
P.(z) is a polynomial matrix of exactly the degree n. If, in particular,
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z=¢", — =Xx=o then the matrix P,(2) =P, (e”) is said to be a trigono-
metric polynomial matrix.

Definition 2. A system
?J(z)l 1 2! (2), <oy P (ZJ
of polynomial matrices of order r will be called orthonormed with respect

to the functional matrix f(x) of order r, defined on the interval [—=, 7]
Hermitian and (L) integrable, if

(0), for jk
E, for j=k
U, k=0,1,..., n; 2=¢),

The condition expressed in Definition 2 is clearly equivalent to the
orthonormedness of the functional matrix system

3 2 |9 @@=

1 1 1
?.()f* (x), @1 ()F*(x), - . ., @ (D)2 ().
Consider now the system
E. Eé,... Eé&=

of trigonometric polynomial matrices. We orthonormalize this system with
respect to the positive definite Hermitian (L) integrable functional matrix
f(x), i. e. by the generalized Schmidt method we orthonormalize the system
of functional matrices

(4) £2(x), f2(x)e, ..., £2(x)e.

The Schmidt method can only be applied, if the system (4) is independent.
By Theorem 3 of [4] it is a necessary and sufficient condition of independ-
ence that the Gramian determinant of the system (4) be positive definite.
In connection with this we may state the following

Theorem 1. If f(x) is a positive definite Hermitian (L) integrable
functional matrix, then the Gramian matrix of the system (4) is positive definite.

ProOF. The Gramian matrix of the system (4) is the matrix

i 1

| ((f%(x) ek, f-lT(x)e-'f.r)) — (21—'“ Jje"('s-f)z f(x)d x)

-7F

(k 1==0,1,...,n)

of order (n+4-1)r. We show that under the conditions mentioned R,., is



The solution of a minimum problem 135

positive definite. Let indeed z=(z0,21,...,2.), 2,=(2},2},...,2)) be an
arbitrary row vector of dimension (n--1)r for which zz's0. Then

it
" n

zRw12' = ZZ zke"“'f(x)e“’r X =

J.llllJ

P Jzke'*’U(x)A(x) U*(x)e "zl dx ==

2"1" k=0 1=0

l

(2, z.e* U (x)] A(x) {Z Z e"‘*U(x)) dx,

2:1

where U(x) 4(x)U*(x) is the canomcal representation of f(x). Denote the

components of the vector > ze™U(x) by a.(x) and the elements of the
k=0
diagonal matrix 4(x) by 4 (x) k=1,2,...,r, then

) 2oz =5 | 0P a@dx.

If now zz'=£0, then from the positive definiteness of f(x) the positivity of
(5) follows.
Now we can effect the orthonormalizing of the system (4) as follows.
1

Let f.(2) = fi(e")=f>(x)e** (k=0,1,...,n). Since the functional
matrices fi(z) are linearly independent, we have
Det (f;.-, fh) >0.
If the square of the norm of f,(2) is denoted by R(0), then the norm of
1

the matrix ¢,(2)=R 2(0)fi(z) is E,, and so the orthonormed system has
the first element

(6) D,(2) = @:(2)f 2(x)=R 2(0).
Let now
v1(2) = 1 (2) — 1 9.(2),

where the matrix e, has been chosen so that (9.(2), ¢.(2)) = (0),. By the
independence of the system (4) the matrix |, (2)||”" exists. If

91(2) = | 9:(2)[| ' (),
then @,(2) is orthogonal to @,(z) and the norm of ¢,(2) is E,. The second
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element of the orthonormed system is
1
D (2)=@(2)f *(x) (z2=o"),
Continuing this process we get a system
Di(2), Di(2),...,DP.(2)

of polynomial matrices, satisfying (3). This system is however not uniquely
determined. Indeed, one sees from (3) that if U; is a constant matrix with
complex elements for which U;U;= E,, holds, then together with ®;(z) also
U®,(2) (j=0,1,..., n) satisfies (3). It is however clear from the construc-
tion that the coefficient of 2/ in @;(2) is a positive definite Hermitian matrix.
Let us now choose the matrix U, so that the coefficient of 2/ in U;®;(2) shall
remain a positive definite Hermitian matrix. Since there exist one and only
one such matrix (namely the unit matrix), this condition makes the system
D;(2) (j=0,1,...,n) uniquely determined.

Theorem 2. If f(x) is a positive definite Hermitian (L) integrable func-
tional matrix, then the Hermitian matrix

d
Si(e, @) =;1I D, () D (x) (/=0,1,...,n)

is positive definite, where « stands for an arbitrary complex number.

Proor. Clearly we have for any row vector z = (21, ..., 2,) the relation
(7) 2D, ()P} () 2" — (2D, () (2D ()" =0.
By the condition for f(x) the matrix
T
-
R(0) — 2—{;J f(x)dx
-7T

and consequently also the matrix R'(0) is positive definite Hermitian. Thus,
if zz"+0, then

8) 2P, (¢) D} (e)z" = zR '(0)z" > 0.
(7) and (8) together say that for any row vector zz"s=0 the relation

J
zS;(¢, @)z" — > 2@, (¢)P}(¢)z" >0 (j=0,1,...,n)
k=0
holds.
We shall need also the following inequality: If A; and B, are arbitrary

matrices of order r (k=1, ..., n), then

Sp Z A:Bi| = (Sp Z A;.-Ai] {Sp 1;2? B"B;)

k=1 k=1 =1

a
2

©)
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and we have equality in (9) if and only if A= 4B, where 4 is an arbitrary
complex number.

Denote indeed the elements of the matrices A, and B, by @’ and 5%’
respectively (j,[=1,...,1r; k=1,... n). Then by Cauchy’s inequality

. 2
2 2 (")b"-l| =
=]

Sp\A:

: (\“ 3550 ‘?"-2] (;3 b ;bj-?"?J :(2 Sp A;;AEJ (_2 Sp Bmz]

;.1;1:1 k=15=1 I=1

and here equality holds if and only if
a® — 16P G l=1,...,r; k=1,...,n)

where 4 is an arbitrary complex number.
Our theorem concerning the minimum problem can now be formulated

as follows:

Theorem 3. If f(x) is a positive definite Hermitian (L) integrable
functional matrix, then for

(10) P.(¢)=E
we have

w

(11)  w.(e, f) = Min Sp 2ir P, (2)f(x)P:(2)dx —Sp S, (¢, «) (z=e"),

where « is an arbitrary complex number, and P,(2) runs through all poly-
nomial matrices of degree n.

REMARK. This theorem is a generalization of the minimum problem
already mentioned due to G. SzeGO. In the case r=1, the integral on the
right hand side of (11) is the so called n-th Toeplitzian form belonging to
the function f(x). In the case r>1 this integral is the n-th generalized Toep-
litzian form belonging to the functional matrix f(x). So the poblem is nothing
else but to find the minimum of the spur of the n-th generalized Toeplitzian
form standing on the right hand side of (11), under the condition (10).

A similar problem has been investigated in the paper [5] by HELSON
and LOWDENSLAGER. Their result holds however only for the limiting case
n— oo, and the assumption they make is also different from (10).

PrOOF. Since the coefficient of 2* in @,(2) is a regular matrix, for any
polynomial P,(2) of degree n there exist matrices X, Xy, ..., X, with constant
elements, such that

P.(2) = XoPu(2) + X1 P1(2) + -+ + X D0 (2)
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holds. Then, in view of the orthonormedness with respect to f(x) of the poly-
nomial matrices @,(2) (k=0,1,...,n)

Sp o [P,.(z)f(x)P (2)dx ﬁz 2 Sp X7 Xi - [¢;.(z)f(x)¢: (@)dx=

=S8p é ). 9. ¢4 (2=¢").

Thus our task is to determine the minimum of Sp > X.Xi under the
k=0

condition

(12) %} X;.d'-';.(a)_

Instead of condition (12) let us consider the condition
n -1 "

(13) Sp (;ﬂxmk(«)) —Sp (Z} xkqbk(a)]
= k=t

which certainly holds in case (12) is fulfilled. With (13) we have by the
inequality (9)

\Sp 2, Xa@;.(tz) i ='Sp (Z X;.@a((c)] = (“2: Sp Xi X?.—] Sp S.(«, «)

and here equality holds if and only if
X =49} («),

where the constant 4 must be chosen so that
-1

Sp (ki:ﬂbﬁ(a)dh (u)) = Sp §i¢ﬁ((c) D, ()
shall be valid, i. e. that
—;—Sp S, (¢, @) — 4 Sp S.(«, @)
shall hold. Choosing from here the positive value of 4 we get

3| SpS _(a , @)
"V SpS.(e, )

So, under condition (13), the expression

A=

o

(14) Sp % [‘P.!(z) f)P()dx  (z=e")

-
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has the minimum Sp S;'(¢, ), and the minimizing polynomial matrix is

e Sp S{.l(a,_aj Eh
(15) P.(2) =+ SpSa.a) > i (a) D.(2).

k=0

This polynomial matrix satisfies condition (13), but

0 ]’ % &b

is in general no unit matrix. From this it follows only that for a polynomial
matrix P,(2) satisfying also (12), i. e. for which P,(«)=E,, the inequality

(e, f)=Sp S, (e, @)

holds.
For the polynomial matrix P,.(2) = S.'(«, @) S.(«, z) we have however
Sp 2171J P.(f(x)P.(2)dx=SpS.'(¢,e)  (2=e")

and P.(e¢)=E,. Thus we have given a polynomial matrix for which the
integral takes on its minimal value, and which satisfies condition (10). This
completes the proof of our theorem.

We still remark that if instead of (13) we had started with the condition

Sp P.(e¢)=r
then the minimum obtained would have been
AT, 52E SN
Sp S.(e, @)
It is an interesting fact that the relation existing between Sp S,'(e, ¢) and

2]

Sp S.(e, @)
mean. As a matter of fact, if the eigenvalues of S,(«, «) are denoted by
11, 22, S /4, then

expresses the inequality between the arithmetical and geometrical

£1+£2+“'+ir

- = l'llf-l‘i'l‘“l'-r
and
1 1 g
S R A Ty
Vih A

Multiplying these two inequalities we get
Sp S.(¢, @) Sp S, (¢, @) = 1
and here equality holds if and only if 4, =4y — .-+ = 4,.
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Theorem 4.
(e, £) = tun (e, f).

PROOF. Let f(x) have the canonical representation
f(x) = U(x) 4(x) U* (),

where U(x) =(ux(x)) (, k=1,...,r); UXx)U*(x)=E, and _4(x) is the

diagonal matrix containing the eigenvalues 4;(x), ..., 4,(x) of f(x). Let more-

over denote the elements of P,(z) by p{’(2), then a simple computation yields
T

(LT (“) f) Mll'l 2] [4: 4}-& 4-\-'

=1 j=1 |k=1

pi(2)u, A (x)dx (z2=¢").

We have however
| l‘ll(z)_ (z)_l_p ZN+1
and so

r

>'p **“(z)u“(x)} 'é pi??("")"k‘(")i+;§|"J'*"“‘(x)|'

k=1

Thus for any choice of ¢; the inequality

a9

(e, f) = Min 2]

i‘i‘ || 2 @m0+ ety +

Fl.rl

kZ: 01152 (X) I] i (x)E dx (z=¢*)

+2‘ 2 PR, ()
holds, and from this we get for o;. =0 the theorem to be proved.
It is clear that if for an arbitrary row vector z= (2,...,2,)
zf(x)z" =zg(x)z’,
holds, where f(x) and g(x) are matrices of order r, then also the relation
(16) (zP.(2))f(x)(zP.(2)) =(2P.(2)) g(x)(zP.(2))
is valid for any polynomial matrix P,(z). From this we infer the following

Theorem 5. If f(x) and g(x) are positive definite (L) integrable Her-
mitian functional matrices and if for any row vector z = (zi, ...,2,) the relation
zf(x)z' = zg(x)z'

holds, then
wle, f)=mle, g)  (1=0,1,...).
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Proor. From '(16) it follows in particular that for any P,(z) polynomial
matrix

Sp P.(2)f(x)Pi(2) = Sp P.(2)g(x) P} (2)
and thus

a7 Sp %j P.(2)(x) P (2)dx = Sp ,- | PP @ax
' (z =e") '

Now, if we denote by Q.(2) the polynomial matrix minimizing the right
hand side of (17), then

(4 )
o 8) = Sp 5 | Qu2)E(®) Qi (2)dx =
= Sp EIT:J 0.OF)QDdx= (e, f) (2 —e).
From this theorem there follows the
Theorem 6. If the positive definite Hermitian (L) integrable functional

matrix f(x) is bounded, i. e. if there exist real numbers m=0 and M=0,
m=M so that for any row vector z=(z,,...,2,) the inequalities

mzz' =zf(x)z" = Mzz'
hold, then

1—|ef 1—|ef
J rm 1-—;¢c|25':'-’—§""'((" f)=rM [—Tap for |1
(18) and
] n:’_"i = (e, f) = Hrf] for |e|=1.

PROOF. By Theorem 5
(e, mE,) = 1, (e, f) = v, (¢, ME,)

and if ¢=0 is constant, then u.(¢, cE,)=cu. (¢, E,). So it suffices to
determine w,(e«, E,). 1f, however, f(x) = E, holds, then

®.()=2'E.  (k=0,1,..)
and so
8.(t, @)= 3 |aPE, =] 1eF—1
=0 (n+1)E, for |a|=1

E. for |e|s1
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and consequently

r||“'—__lT- for |a|+1
W, (“1 Er) =' r
: = for |e|=1.
From this, (18) already follows.
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