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Associative functions and statistical triangle inequalities
By B. SCHWEIZER (Tucson) and A. SKLAR (Chicago)

Introduction. In the course of our work on statistical metric spaces
[16, 17], we have been led to consider a class of real-valued 2-place func-
tions 7, whose domain is the closed unit square [0,1]<[0,1] and which
satisfy the following conditions:

0.1) T(0,0)=0, T(a,1)=T(l,a)=a. (Boundary conditions)
(0.2) T(a,b)=T(c,d), whenever a=c,b=d. (Monotonicity)

(0.3) T(a, b)=T(b, a). (Symmetry)

0.4) T(7(a, b), c)= T(a, T(b, ¢)). (Associativity)

These functions arise naturally in the study of generalized triangle inequali-
ties for statistical metric spaces; and, following K. MENGER [14], a function
which satisfies the conditions (0.1)—0.4) is called a triangular norm (briefly,
a t-norm).

Knowing whether a given generalized triangle inequality holds or does
not hold in some given statistical metric space can often be crucial. For this
reason, among others, it is important to know as much as possible about
f-norms and, in particular, to have a large repertoire of them at hand. What
is required, therefore, is a characterization of f-norms — a characterization
which will reveal their mutual relationships and enable us to construct
them at will.

In attacking this problem of characterization, it has turned out that the
most useful — and intrinsically the most interesting — property of {-norms
is their associativity (Condition (0.4)).") Now, associativity has been studied
in extenso from the algebraic point of view; and even the, by comparison,

1) This condition states that the f~-norm T defines a semigroup on the closed unit
interval |0, 1]. The other conditions further imply that this semigroup has a unit, 1, and
an annihilator, 0 (Condition (0. 1)); and that the semigroup operation is order-preserving
(Condition (0.2)) and commutative (Condition (0. 3)) [10]. Our central problem may thus
be restated as that of characterizing and constructing all semigroups on [0, 1] which have
these properties.
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neglected function-theoretic aspect of associativity, which departs from the

functional equation (0.4), can boast a distinguished roster of investigators

[1, 3, 7, 9, 13], headed by ABEL. As a result of their researches, there exists

today a means of characterizing in a simple manner, not, it is true, all

t-norms, but a large and important class of them. This is the class of strict

t-norms, which in addition to (0.1) and (0.4) satisfy the following con-

ditions:?)

(0.5) T is continuous (on [0, 1] < [0, 1]).

(0.6) T(a, b)<T(c,b), whenever O<a<c=1,
T(a,b)<T(a,d), whenever O<b<d=1.

Accordingly, in this paper we shall confine ourselves to a study of strict
t- norms (Part I) and their applications to statistical metric spaces (Part II).

(Strict monotonicity)

I. Associative functions

1. Preliminary theorems. The topics discussed in this paper take
as their starting point the following known theorems:

Theorem 1. Let [ be an open or half-open (but not closed) interval
of the real line and T a 2-place function from [ 1 to 1. Suppose that T is
continuous and strictly increasing in each of its places, i.e., that

T(a,b)<T(c,b), T(a,b)<T(a,d)

Jor all a,b,c,d in I such that a<c,b<d. Suppose further that T is asso-
ciative, i. e., satisfies the functional equation,

(1.1) T(7(a, b), )= T(a, T(b, ¢)),
for all a, b, c in I. Then there exists a 1-place function f, defined, continuous,

and strictly monotone on I, such that for all a,b in I, T(a, b) has the re-
presentation,

(1.2) T(a, b) = f*(f(a) +£(b)),

where f* is the inverse function of f.

Corollary. If T satisfies the hypotheses of Theorem 1, then T is sym-
metric, i.e., T(a, b)= T(b,a) for all a,b in I. Thus every continuous, strictly
increasing, associative function is symmetric.

2) It is clear that (0.6) implies (0.2). The fact that (0.4), (0.5) and (0.6), taken
together, imply (0. 3) is a direct consequence of an important theorem of ]. Aczér [3),
which is quoted in Section 1 of this paper.
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Theorem 2. [If, for a given T, f and g are both strictly monotone
solutions of (1.2), then there exists a number i such that g = if; conversely,
if for a given T, f is a (strictly monotone) solution of (1.2) and g=if,
for some number i, then g is a solution of (1.1) for this same T.

Theorem 3. (Converse of Theorem 1.) Let f be a continuous, strictly
monotonic 1-place function from the (open or half-open) interval I (= Dem f,
to the interval Ran f. Let f* be the inverse of f. Suppose further that Ran f
is closed under addition, i.e., that if x and y are both in Ran f then so is
x-+y. Then the 2-place function T which is given by (1.2) is defined, con-
tinuous, strictly increasing in each place, and associative on I 1.

The solution of (1.1), the functional equation of associativity, in the
form (1. 2) was first obtained — under the additional assumptions of com-
mutativity and differentiability — by ABEL in 1826. It is, in fact, the subject
of the first paper published by him in Crelle’s journal [1]. Further work
along these lines has since been done by L. E. J. BROUWER [7]. E. CARTAN
[9], J. AczeL (3], M. Hosszu [13] and T. S. MOTzKIN [15]. The form in which
we have stated Theorem 1 uses the weakest hypotheses thus far known to
be sufficient to guarantee the existence of the representation (1.2) and is
due to J. AczéL. We refer the reader to his interesting and elegant paper
[3] for the proof. Similarly, the statement of Theorem 2 may be found in
another paper by AczeL [4, p. 353], and its proof in a third [2] (Cf. also,
R. CaccioppoLr [8]).%)

Theorem 3 is very much simpler than Theorem 1 — its proof being
a mere matter of calculation. On the other hand, whereas the proof of The-
orem 1 makes essential use of many of the properties of the real number
system, Theorem 3 can readily be modified so as to apply to general ab-
stract semigroups. Our study of non-strict f~-norms (the results of which will
be presented in detail in a subsequent paper) has led — indeed, forced —
us to consider this modification. Here, our starting point is a group of the-
orems due to AL. C. CLimescu [11] on the transformation of semigroups
into semigroups. CLIMESCU’s results can be extended in several ways. And
these extensions, which are of interest in their own right, have, when spe-
cialized back to the case of associative functions on the reals, the effect of
giving us the conclusion of Theorem 3 under a considerably weakened set

%) Note added in proof: These theorems, their proofs and many other questions
connected with the functional equation of associativity are discussed in detail by ]. AczéL
in his recently published book, Vorlesungen iiber Funktionalgleichungen und ihre Anwen-
dungen, Basel und Stuttgart, 1961.
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of hypotheses. They thereby apply to, and yield, a large number of non-strict
t-norms.

2. The characterization of strict f-norms. Strict f-norms, as de-
fined in the introduction, satisfy all the hypotheses of Theorem 1, whence
we immediately have a representation of these f-norms in the form (1.2).
In this case, f is a continuous, strictly monotone function on the half-open
interval (0, 1]. Moreover, the presence of the boundary conditions (0. 1) allows
us to determine the behavior of any such f at the endpoints of this interval
as follows: The boundary condition 7'(a, 1)=a yields f(7(a, 1))= f(a). But

AT(a, 1)) =fIf"(fl@+ )] =f@)+1Q),
from which it follows that f(1) = 0. Next, in order to determine the behavior
of f near 0, suppose that lim f(a) = A. Then, upon imposing the condition

a-—»4
lim 7(a, a) =0, we obtain lim f(7(a, a)) = A. But, as above,
=il =)

A(T(a, @)) =111 (f(a) + f(@))] = 2/(a).
Consequently, l.iT A(T(a, a))=2 l_irfl f(a)=2A, whence A = 2A. Now A cannot

be zero, since f cannot assume the same value twice. Hence A is not finite.
The choice of A as 4o or —oc is at our disposal and, as a matter of
convenience, we shall consistently choose A= -+ oo. Consequently, the func-
tion f appearing in (1.2) decreases steadily from -+ o to O as its argument
increases from O to 1. Correspondingly, f*, the inverse of f, decreases ste-
adily from 1 to O as its argument increases from O to - oc. Summarizing,
we have

Theorem 4. If T is a strict t-norm, i.e., a 2-place function satisfying
the conditions (0.1), (0.4), (0.5) and (0.6), then there exists a 1-place func-
tion f, defined, continuous and strictly decreasing on the half-open interval
(0, 1], with Iirpf(a) = + oo, f(1)=0, and such that for any (a, b) in (0,1] x
w1 T

(2.1 T(a, b) =1 (f(a)+ f(b)),
where f* is the inverse of f.

Given 7, we shall call any function f that satisfies all the conditions
stated in Theorem 4 an additive generator of T. It follows that if f and g
are both additive generators of one and the same strict ~norm, then g =4f,
where 4 is a positive constant. Conversely, if f is a function which is de-
fined, continuous and strictly decreasing from -+ o to O on the interval
(0, 1), then f is an additive generator of a strict #~norm; and if 4 is a positive
constant then ZAf is an additive generator of the same f-norm.
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Strictly speaking, an additive generator determines its corresponding
strict #-norm only on (0, 1] < (0, 1], not on [0, 1] < [0, 1]. However, this is a
matter of little consequence: first of all, the boundary conditions (0.1) imply
that any f-norm assumes the value zero whenever one or the other of its argument
is zero; and secondly, any strict f-norm may be extended — either directly by
continuity or via the representation (2.1) — so as to assume the correct
values on those parts of the boundary of the unit square to which the re-
presentation (2.1) does not apply directly. Thus a strict t-norm is completely
characterized by any one of its additive generators.

The following theorem is the multiplicative equivalent of Theorem 4:

Theorem 5. If T is a strict t-norm, then there exists a 1-place func-
tion h, defined, continuous and strictly increasing on the closed interval [0, 1],
with h(0)==0, h(1)=1, and such that for any (a,b) in [0,1] < [0, 1],

(2.2) T(a, b) = h*(h(a)-h(b)),
where h" is the inverse of h.

ProOF. In view of Theorem 4, an additive generator, f of 7 exists. Let
h be the function defined by,

(2.3) h=exp(—f)=e".
Then we have,
(2. 4) f=—logh, f*=h*'(e?), h*=f"(—log),

where h* is the inverse of A, and j is the identity function defined by:
j(x) == x, for any real number x. It follows that # and A* are both defined,
continuous and strictly increasing on the half-open interval (0, 1]. Further-
more, 7 and 2* may be extended by continuity to the closed interval [0, 1].
Both & and A* are strictly increasing on this interval and we find that
h(0)=h"(0)==0, h(1)=Ah*(1)=1, so that each of these functions maps the
closed unit interval onto itself. Lastly, in terms of 2 and A%, (2.1) takes the
form,
T(a, b) = I’ [exp(—(—log h(a)—log h(b)))]
= h*[exp(log h(a)-+log h(b))]
h*(h(a)-h(b)),

which is our desired result.

The function f completely determines the function A, and conversely.
Therefore a strict f-norm is as completely determined by the latter as by the
former. Accordingly, we call h a multiplicative generator of its corresponding
t-norm. Any two multiplicative generators of the same strict #-norm are po-
sitive powers of each other.
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The 2-place function Prod, defined by
(2.5) Prod (a, b) = a-b,

is a strict #-norm. The function — log is an additive generator of Prod; the
corresponding multiplicative generator is j,, the restriction of the identity
function j to the interval [0, 1]. The other additive (respectively, multiplica-
tive) generators of Prod are of the form —/Zlog (respectively, ji), where
4>0. Now, in terms of Prod, (2.2) may be cast into the form

(2.6) T(a, b) = h*(Prod(h(a), h(b))),
and accordingly, Theorem 5 may be rephrased as follows:

Theorem 6. A 2-place function T on the closed unit square is a strict
t-norm if and only if it is derivable from the particular t-norm Prod via
(2.6) through the intermediary of a multiplicative generator h.

3. Examples. With the equivalent Theorems 4 and 5 we have achieved
the first aim of this paper: the characterization of strict #~norms. Their con-
verses, similarly, enable us to achieve another aim: the construction of
t-norms. We can, in fact, construct entire families of #-norms at will. A number
of examples follow.

(@) Let hy=[1—(1—j)"]"*, for any p>0, i.e., hy(a)=[1—(1—a)’])"?,
for 0=a=1, p>0. Then A} —1—(1—j{)"", and

3.1) Ty(a, b)=1—[(1—a)’ + (1 —b)" —(1—a)"(1—b)"]'"".

For p=1, we find that 7,=Prod. The limiting cases: p—0-+,
p—»oo are also of interest. A short calculation yields

lim T,(a, b) = T.(a, b),

Pt
lim 7,(a, b) = Min(a, b),
pro
where 7. is the function on the unit square given by
s’a, =1,
(3.2) T.(a,0)=4b, a=1,
(0, otherwise;
and Min is given by
! (83, 0=0=2d=],
(3.3) Min@,8)=]," o=, =,

Direct reference to the definition shows that 7,. and Min are both
t-norms,’) though neither is a strict -norm. It is also easy to show (Cf.

e [;%];‘his fact is also a direct consequence of a theorem due to E. Tuore (Theorem
Y L
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[17], p. 318) that 7., is the minimal, and Min the maximal #-norm.

(b) Let f,—|log|’, for any p>0. Then fj—exp(—j'") and

(3.4) T,(a, b) —exp [—(|log a|" 4| log b[")"").
Again we find that 77 = Prod, and lim 7, = T,., lim 7, = Min.
P>+ p—>a
(c) Let f, = (1—1log)"—1, for any p>0. Then f;—exp [l —(1+/)""] and
(3.5) T,(a, b) = exp {1 —[(1 —log a)" + (1 —log 6)"]""}.
Again we find that 7)== Prod, and lim 7},-= Min. However, in this case, for
p=>=0

the limit p —0-, we obtain
lim 7,(a, b) = a-b-exp (— log a-log b)

el
(d) Let f,—ji"—1, for any p>0. Then f;—(1+/)"" and
(3.6) Ty(a, b)=(@* + 67— 1) = a-b

= (ap_'_bp_ap_bp)lp'

In this case we find that

S
at+b—a-b

and that lim 7, = Prod, lim 7,, = Min.

i+ prx

Ti(a, b) =

@ Let f,—plj—p+1—ji, for any p>0. Then f;=%{l—p—-j+
+[(1—p—/)*+4p]'*} and

10, 0) =3 [a+o—14p(L4+4+1)+
(3.7) "

2 1172,
+ [a+b—r+p(%+%+i]] +4p{ .

The interest in this example lies in the limiting case p—0-4. It is
readily seen that

lim T,(a, b) = %(a—|— b—1)+ % (la+b—1p)2

r- >l

=%(a+b—l+|a+b——l|)
= Tw(a, b),
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where T, is the function on the unit square given by
3.8) T..(a, b)=max(a+b—1,0).
Again T, is a f-norm, though not a strict f-norm.

4. Geometry of t-norms. We end the first part of this paper with a
few remarks of a geometrical nature.

In studying f-norms, it is desirable to have a “picture” at hand. Now,
a t-norm determines a surface over the unit square in the xy-plane. From
Condition (0. 1) it follows that this surface contains (and, when continuous,
is bounded by) a skew quadrilateral (indicated by the heavy lines in Figure
1) whose vertices, in order, are the four points: (0,0,0), (1,0,0), (1,1,1)

(44)

(0,0,0) (10,0)

Fig. 1

and (0, 1,0). Condition (0.2) implies that the height of this surface above a
point in the unit square increases, or at least does not decrease, as the x
or y coordinates of this point increase. Thus the surface lies entirely in the
unit cube. Condition (0.3) implies that this surface is symmetric about the
plane x=y.

In Figure 1 we have sketched the graphs of the f-norms Min and 7,
(see (3.3) and (3.8)), each of which consists of two triangular pieces.
In addition, the graph of Prod consists of the portion of the hyperbolic para-
boloid z=xy which is bounded by the previously mentioned skew quadri-
lateral; and the graph of T, (see (3'2)) consists of the region [0,1)x[0,1)
in the xy-plane together with the two sides of this quadrilateral which are
not in the xy-plane.

There remains the associativity condition (0.4). This seems to have no
simple geometric interpretation as far as the ‘“‘associative surface” determined
by a f-norm is concerned. About the most that seems to be known at present
is that, if 7 is a strict f~-norm, then the three systems of curves, x=-const.,
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y = const., and z= T(x, y) = const., form — at least locally — a hexagonal
web (Sechseckgewebe) [5, 6, 19] — which one may consider as lying either
on the associative surface or in the xy-plane. Nevertheless, this fact raises
several intriguing questions. In his classic paper [19], G. THOMSEN connected
the property that certain triples of systems of curves on a surface form a
Sechseckgewebe with the property that this surface is isothermal.”) Now, the
surface 2= xy, determined by the f#-norm Prod, is isothermal; and every
associative surface has at least one triple of systems of curves on it which
form a Sechseckgewebe. Thus one may ask: Is every (sufficiently smooth)
associative surface isothermal? More generally: What geometric properties of
Prod (or, for that matter, any 2-place function) are preserved by the trans-
formation (2.6)?

II. Applications to statistical triangle inequalities

5. Statistical metric spaces. Before applying the results of the pre-
vious sections to statistical metric spaces, we briefly review their definition
and several of their basic properties.’)

Definition 1. A statistical metric space (briefly, an SM space) is an
ordered pair (8, 7), where & is a non-empty set (whose elements are the
points of the SM space) and § is a mapping from §x§ into the set of
distribution functions — i.e., ] associates a distribution function F,, with
every pair of points p, ¢ in 8. The functions F,, are required to satisfy the
following conditions:

I. F(x)=1 for all x>0 if and only if p=gq.
[I. Fpe(0) =0.
5. 1) #2(0)
. Fopy=F,,.
IV. If F,(x)=1 and F,,(y)=1, then F,.(x+y)=1.

The number F,,(x) is interpreted as the probability that the distance
from p to ¢ is less than x; and, as one readily sees, the conditions [—IV
are straightforward generalizations of the corresponding properties of ordinary
metrics; in particular, IV is a generalization, albeit a very weak one, of the
ordinary triangle inequality.

5) A surface is said to be isothermal if its lines of curvature form an isothermally
orthogonal net, i.e., if there exists a parametrization, say in terms of u, v, such that the
lines of curvature are the curves u == const., v=const., and such that the first fundamental
form, i.e. the square of the element of length, has the from, ds?®=Ai(u, v)(du®-+ d®).

") For a detailed discussion, see [17].

D 12
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In this paper we shall be concerned with a different generalized triangle
inequality — namely the one due to K. MENGER [14] which stipulates that

(5.2) Fyr(x+4y) = T(Fpe(x), For (),

where p, ¢, r are points in §, x, y are non-negative real numbers, and 7T is
a t-norm. Since 7(1,1)-=1, the inequality (5.2) contains IV as a special
case. This, as in [16, 17], leads us to the following:

Definition 2. A statistical metric space (8, ) is a Menger space if the
inequality (5.2) is valid for all points, p, ¢, r in §, all x,y=0, and some
t-norm T and we say that (8, ) is a Menger space under T.

Definition 3. Let W, and W, be two 2-place functions with a common
domain D. Then W; is said to be weaker than W. (and W. stronger than
w,) if Wi(a, b) = W-:(a, b) for all (a,b) in D and Wi(a, b) < Wa(a,b) for at
least one pair (a, b) in D.

It follows that if an SM space is a Menger space under some {-norm
7, then it is a Menger space under any f-norm weaker than 7. As mentioned
in Section 3, 7, is the weakest and Min the strongest possible #-norm. The
t-norms 7, and Prod are of intermediate strength, with 7, being weaker
than Prod.

An immediate application of the results of the preceding section yields
the following:

Theorem 7. Let Ty and T be strict t-norms, fi an additive generator
of T\, and f. an additive generator of T.. Then T, is weaker than T, if and
only if the composite fif* is a non-linear subadditive function.”)

PROOF. Let s,{=0 be given and set a=f(s), b=/5(f). Then (a,b)
lies in the unit square. By hypothesis, 7i(a, b) = T:(a, b), which by Theorem
4 is equivalent to

fi(fi@)+ /(1) =f2(fo(a) + £2(b))
RIAEE)+A(FEON=L(s+1).

Now f; is decreasing, so that on applying fi to both sides of the above
inequality, we obtain

Al +DI=A(£ ) +A(F @),

HEGS+H)=LL6) L)
Thus fif? is subadditive. If fif2 were linear, then we would have ff'(x)=

or

1. e,

") This theorem is thus, in a sense, an extension of Theorem 2,
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=ux+v, for some u,v and all x=0. Setting x=0 yields v=f,f:(0)=
=fi(££(0) =/fi(1)=0 and leads to f;=uf.. But this, by Theorem 4 ff.,
implies that 7, and 7. are identical and is contrary to hypothesis. This proves
the “only if” half of the theorem; the “if” half follows on reserving the steps
of the proof.

If an SM space is a Menger space under a strict f~-norm, then by applying
Theorem 4, the inequality (5.2) can be cast into an interesting form. For,
using the representation (2.1) in (5.2), we obtain

For(x 4+ ) = f* [f(Fa(2)) + f(Four ()]

whence, since f is a decreasing function, we have
(5.3) JFp (X + 2] = flFoa O] +f1F ()]

an inequality that bears a striking resemblance to the triangle inequality in
an ordinary metric space.

6. Triangular conorms. In studying SM spaces, it is sometimes
more convenient to work with the functions G,,—1—F,, rather than with
the functions F,, themselves. Since G,,(x) is the probability that the distance
between p and g is greater than or equal to x, this amounts to working with
the tails of the distance distributions rather than with their central portions.
Simultaneously, it is convenient to replace any #-norm 7 that occurs by a
function S, which will be called a triangular conorm (briefly, a f-conorm),
and is defined in terms of 7 by:

(6.1) S(a, b)=1—T(1—a, 1—b).

It is readily verified that S has the same domain and range as 7; and that
the boundary conditions (0.1) for 7 transform into

(6.2) S(1,1)=1, 8(a,0)=S8(0,a)=a,
whereas the conditions (0.2), (0.3) and (0.4) are satisfied by S as well

as by T.
On replacing a and b in (6. 1) by 1—a and 1—b, respectively, we obtain

(6. 3) T(a, b)=1—S(1—a, 1—b).

Thus there is a one-one correspondence between f-norms and f-conorms —
a t-norm determines a unique f-conorm, and conversely. Geometrically, the
graphs of a #-norm and its corresponding f-conorm are reflections of each
other in the point (1/2, 1/2, 1/2), the center of the unit cube. It follows that
if 7, and 7. are f-norms whose {-conorms are S, and S., respectively, and
if 71 is weaker than 75, then S, is stronger than S.. Consequently, the
weakest possible 7-conorm corresponds to the strongest possible #-norm,
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namely Min. Now, the f-conorm of Min is the function Max, defined by
b, O=a=b=1,

(6.4) Max (a, b) = a, 0=b=a=1;

and since Max is stronger than Min, it follows that any #-conorm is stronger
than every f-norm.

A strict t-norm determines a sfrict f-conorm. In particular, the #-norm
Prod determines the #-conorm Sum — Prod, defined by

(6.5) [Sum — Prod](a, b)) =a+b—a-b.

If 7 is a strict #~norm, then a substitution of the representation (2.1)
into (6.1) yields

S(a, b) = 1—f*(f(1 —a)+f(1—0)).
Thus, upon defining the function g by

(6.6) g=J(1—/),

so that

(6.7) f=g(—j) g'=1-f, f=1-g°%
we have the familiar representation,

(6.8) S(a, b) =g"(g(a)+£(b))-

From (6.6), (6.7) and the known properties of the additive generator f, it
follows that

(6.9 £(0)=g"(0)=0, lijgg(x)=m, ‘rljg_} g'(x)=1,

and that both g and g* are strictly increasing on their respective domains.")
Following our previous terminology, we call the function g an additive gene-
rator of the f-conorm S. Next, let

(6.10) k= exp (—g),
so that
(6.11) g=—logk, g*'=K(e’), k=g*(—Ilog).

Then, in terms of k and £*, (6.8) takes the form

S(a, b) = K [k(a) + k(b)— k(a)-k(b)] —
— K*([Sum — Prod](k(a), k(b)))-

Equation (6.12) bears the same relationship to (6.8) as (2.2) and (2.6)

(6.12)

%) One can, of course, obtain the representation (6.8) and the properties of g and g*
a la Theorem 1, etc.
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bear to (2.1). It should also be noted that the relationship between k¥ and g
is the same as that between & and f; and furthermore, we have

(6.13) k=h(1—j1), h=k(1—}), K=1—F, KF=1—F"",

which should be compared with (6.6) and (6. 7).

Some of the examples of associative functions given previously take on
a simpler form when expressed in terms of S, g, k instead of 7, f, h. For
instance, the functions k, corresponding to the functions 4, of Example (a)
of Section 3 are given by

(6. 14) k= (1 ____jf’)l"?’
and the f-conorms, S,, determined by these k, via (6.12) are given by
(6. 15) Sp(a’ b) L (a!’ + bl’_ab.bh)l-p-

These latter form a family of particularly simple associative functions. It is
also worth noting that, for p=1, the graphs of the functions k, are the in-
dicatrices of Minkowski geometries.

Returning to the remarks made at the beginning of this section, suppose
that 7 is a #-norm and S the corresponding #-conorm. Then, on substituting
(6.3) into the Menger triangle inequality (5.2), we have

For(x4+y) = 1—8(1—Fpe(x), 1 _F'f"(y))!
or
1—Fpr(x+y) = S(1—Fp(x), 1 —Fe(3)),

which, when expressed in terms of the tails of the distribution functions in-
volved, becomes simply

(6.16) G (x+3) = S(Gu (x), Gor(9))-

7. Equilateral spaces. The function ¢* introduced in (6. 7) and (6. 9)
increases steadily from O to 1 as its argument increases from 0 to + oc.
It thus has all the properties that are required of a distance distribution
function in an SM space (see Definition 1). This observation leads at once
to the following:

Lemma. Suppose that the points p, q, r are the vertices of an equi-
lateral triangle in an SM space, i.e., that F,,= F,, = F,.= F. Suppose fur-
ther that, on the interval [0, ~), we have F=g*, where g* is the inverse of
an additive generator g of a strict t-conorm S. Then, for the triple of points,
P, q, r, the Menger triangle inequality (5.2) holds, with strict equality, under
the t-conorm S — that is to say, for all x,y=0,

(1.1) Fyn(x+y) = S(Fpu (x), Fur(9)).
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PrOOF. Using the representation (6.8), we have

S(Fpo(x), Fiu()) = & [g(Fua (%)) + g(Fur ()]
—=g"[g(g"(x)+2(g*" )]
=g%(x+)
= Fpr(x+y).

The simplest SM spaces are the equilateral spaces [17, pp. 321—322],
namely those in which all pairs of distinct points have the same distance
distribution. It follows that any three distinct points in an equilateral SM
space form an equilateral triangle. Consequently, we have

Theorem 8. Let S be a strict t-conorm. Then there exists an equi-
lateral SM space such that, for all triples of distinct points in the space, the
Menger triangle inequality holds with strict equality under the t-conorm S,
i.e., in the form (7.1). Moreover, this result is the best possible, in the sense
that, in (7.1), the t-conorm S cannot be replaced by any stronger function.

PROOF. Let § be a given set; and let g be an additive generator of
the f-conorm S, with inverse g*. For any pair of points p, ¢ in § define
Fyy by:

(0, x=0,
Fp(x)=11, x>0, p=yq,
g'(x), x>0, p+#q.

This construction leads to an SM space which is clearly equilateral. The
remainder of the proof is now an immediate consequence of the preceding
lemma.

It should be noted that since, in view of Examples (@) and (b) of Sec-
tion 3, there exist sequences of f-conorms which converge to the strongest
possible #-conorm — the f-conorm of 7, —, the S in Theorem 8 may be
arbitrarily strong.

Theorem 8 is a counterpart to some results of E. THorp [20] which,
for any given f-norm 7, enable one to construct a Menger space for which
T is the strongest possible f-norm. THORP’s results are obtained in a manner
quite different from ours. This is to be expected. For f*, the inverse of an
additive generator of a strict £~-norm, is not a distribution function — a fact
which makes the considerations of Theorem 8 and the preceding lemma
inapplicable to the case of f-norms.

8. Convexity and copulas. In Section 6 we encountered a family of
functions whose graphs are indicatrices for Minkowski geometries. Now as
is well known, in a Minkowski space, the convexity of the indicatrix is a
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necessary and sufficient condition for the validity of the (ordinary) triangle
inequality. It is therefore not unnatural to ask whether convexity plays any
significant role in the theory of SM spaces and f-norms. The following dis-
cussion seems to indicate that the answer is in the affirmative.

Theorem 9. A strict t-norm T satisfies the inequality
@8.1) T(a,d)+T(c, b) = T(a, b)+ T(c, d),

for all a, b, ¢, d such that 0=a=c=1, 0=b=d=1, if and only if any
additive generator f of T is convex.

[N. B. The inequality (8.1) says that 7" is non-decreasing in the sense
in which this term is applied to a 2-dimensional distribution function.]

PROOF. Suppose that 7 satisfies (8.1) and let a,6 be any two num-
bers such that 0=a=0b=1. Set uzf'(%f(a)), v -—-:f'[%f(b)), so that

a=f*(2f(u)), b=/*(2f(r)). Then 0=u=v=1; and using (8.1), we have
T(u, v)+ T(r, u) = T(u, u)+ T(r, ©).
Now by Theorem 4, T(u, u)= f*(2f(u)), T(v,v)=f"(2f(»)); and T(u,r)=
= T(v, u) = f*(f(u) + f(»)). Consequently,
21 (f) + () =1 2f(w)) + f(2f(r)) = a+b.
Therefore,

3 @HO=7 (@ +fO) =1 (5@ + 5 £®)).

But since f is decreasing, this means

Ll ) S J@+1®),

whence f, being continuous, is convex.

To prove the converse, suppose that f is convex. Then f*, being the
inverse of a non-increasing, invertible convex function, is convex. Accordingly,
for any 42 between O and 1, and any x, y we have

[ax+(1—=y)=if )+ 1—2)1f (»),
F((A=x+2y)) == x)+ 4 (y).
Adding these two inequalities yields,
(8.2) FrAx+(1=DY) 1 (1—Dx+p) = £/ (X) +1 (7).

Now let a, b, ¢, d be such that O0=a=c=1, 0=b=d=1; and let
u = f(a), v=f(b), s=f(c), t=J(d). Since f is decreasing, we have s=u,
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t =v. There are now two cases: (1) either s<u or f<wv, or both; (2) s=u
and f=v. In the first case, on setting x=wu+rv, y=s-+1¢ and substituting
in (8.2), we obtain

8.3) U+ +(1—=DE D)+ (—Du+)+is+D) =

= (u+v)+(s+1).
5 u—s : v—1t
Next, choose 4i— rpEEe whence ]_"':m' Then, after
some simplification, (8.3) reduces to
(8.4) Fa+t)+f s+r)= (+0)+f(s+1).

In the second case, i. e., when s=u and =1, (8.4) is trivial. Thus (8.4)
holds whenever s =u, t=v. But (8.4) is equivalent to

(@ +f(@)+1 () +f(B) = (f(@) +1(6)) + 1 (f(c) + f(d)),

which, by Theorem 4, is in turn equivalent to (8. 1). This completes the proof
of Theorem 9.

In order to discuss the implications of Theorem 9, we need the concept
of a “copula” which was introduced by one of us in [18].

Definition 4. A (2-dimensional) copula is a 2-place function C, which
is defined and continuous on the unit square and satisfies the following
conditions:

(A) C@0,0)=0, C(a, 1)=C(1, a)=a.
8.5) (B) C(a,b)=C(c,d), whenever a=c, b=d.
(C) C(a,d)+C(c,b)=C(a,b)+C(c,d) whenever a=c, b=d.

Note that the Conditions (A) and (B) of (8.5) are the same as the Con-
ditions (0.1) and (0.2) which are satisfied by all #~-norms. Indeed, many (but
not all) copulas are #-norms, and many (but not all) f-norms are copulas.
For example, the 2-place function B defined by: B(x, y) = xy +xy(1—x)(1—y)
is a copula, but is not associative and hence not a f-norm; while on the
other hand, the #-norm 7, is not continuous and hence not a copula.

The following properties of copulas were presented in [18]:")

1. Let V be a 2-dimensional distribution function with margins F; and
Fs, i.e., Fi(x)=V(x, + ) and Fo(x)=V(+ =, x), for all x. Let Ry, R:
denote the ranges of Fy, F., respectively. Then there exists a unique function
H, whose domain is R, < R. (and is therefore a subset of the closed unit
square), such that for all x, y,

(8.6) V(x, y) = H(Fi(x), F2(y)).

9) In [18] these results were stated for the general n-dimensional case.
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2. The function H may be extended (generally in more than one way)
to a copula C, which, being an extension of H, satisfies

(8.7) V(x, y) = C(Fi(x), F2(y)).

3. Let F; and F> be two 1-dimensional distribution functions and C a
copula. Then the 2-place function V defined by (8.7) is a 2-dimensional
distribution function whose margins are F, and F..

4. The weakest (2-dimensional) copula is the f#-norm 7., defined in
(3.8), and the strongest copula coincides with the strongest f-norm, Min.")

Restated in terms of copulas, Theorem 9 becomes:

Theorem 10. A strict t-norm T is a copula if and only if any (and
hence every) additive generator of T is convex.

Corollary. If an additive generator of the t-norm T is convex, then T
is not weaker than T.,..

Looked at from the point of view of SM spaces, Theorem 10 says that
an additive generator of a f-norm T is convex if and only if the 2-place
function V., defined in terms of the triple (p,¢q, r) of points in the SM
space by

Viar (X, ¥) = T(Fp (x), Fur(3)),

is a possible joint distribution function for the distances from p to q and from
g to r. If V,, is in fact this joint distribution function, and if the S M space
is a Menger space under 7, then the generalized triangle inequality (5.2)
simply states that the probability that the distance from p to r is less than
x-y is at least as large as the joint probability that the distance from p to
q is less than x and the distance from ¢ to r is less than y. Thus assuming
(or showing) that V,,. is indeed the joint distribution function for the dis-
tances from p to ¢ and from ¢ to r considerably strengthens the interrela-
tionship between the geometric and probabilistic aspects of a statistical
metric space.
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