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Functional equations for products and compositions
of functions |

By J. ACZEL (Debrecen), M. HOSSZU (Miskolc), E. G. STRAUS (Los Angeles)

R. BELLMAN [2] has posed a number of problems on functional equa-
tions. One of us [7] has published a solution of the first of these problems.
In this note we wish to consider the formal structure of these questions and
thereby obtain methods of solution for a larger class of related problems.

1. Multiplicative functionals on an Abelian Banach algebra
(BELLMAN’s Problem 14). The original problem was that of determining the
functionals F, defined for functions u which are n times differentiable on
some set, so that F,(u) could be expressed as a function f.(u,u’,...,u")
of u and its first n derivatives in a fixed point and F,(uv)= F,(u)+ F.(»)
whenever uv 0.

The fact that the variables in f, were derivatives (in a fixed point) is
really not relevant to the problem and we could instead ask the question:

Let F be a functional defined for (n- 1)-dimensional vectors
u=(uo, uy,,..,u,) with a product uv defined so that

(1) (uv)i= i(; | Ui jv;

=0

and let the values of F lie in a set in which an associative operation -+ is
defined, under what conditions does F satisfy
F(ur)= F(u)+ F(v) whenever uyv,=0?

We subsume these questions in the following.

Problem 1. Let U be an Abelian Banach algebra. What functionals F
defined on U satisfy
(2) F(uv)= F(u)+ F(r)
whenever «# and » are not zero divisors?

The main problem is that of converting the multiplicative identity (2)
into an additive one.
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Lemma. Let U be an Abelian Banach algebra with an identity element e.
Then there exists a homomorphism between the additive group of U and the
maximal connected multiplicative subgroup of U which contains e.

n

Proor. Define the formal exponential function expu=2::—, which con-
verges for every u € U. Then the mapping u— exp u gives
u v —(exp u) (exp v).
The fact that every element in the maximal connected subgroup which

contains e has the form exp u, — that is, the existence of a formal logarithm
for that group, was proved by E. LorcH [5].

Theorem 1. Let U be as in the Lemma and let F(u) be defined on
U so that
F(uv)= F(u)+ F(v)
whenever u,v are not zero divisors. Then F(exp u) is an additive function of u.

PrROOF. Write F(exp u)= g(u) then

&(u+v) = F((exp u)(exp v)) = F(exp u)+ F(exp v) =g (u) + g ().

REMARK. If U is finite dimensional vector-space then any additive func-
tion on U can be written as a sum of additive functions of the components.
That is for u=(uo, u,...,u,) we get

g)=2¢0....,0,u,0,...,0)= X a(u)

i=0
where the a; are additive.
Under suitable regularity conditions (e. g. measurability) on the functions
a; we get (for real u; and real valued F(u))

T

glu)=2 au.

Some discussion may be in order concerning the value of F for units
u of U which are not contained in the component E of the identity e. Since
E is divisible it is a direct factor of the group U® of units in U (see e. g.
[4, Theorem 2]). Thus we can write

u=|ulargu
for all u € U*, where |u|€E, arg u€ A and U*=E X A. Now
F(u)=F(|u|)+ F(arg u) ueU*

where F((«|) is an additive functional of log «| and F(arg u) is an arbitrary
additive character of A. In particular F(a) =0 for all elements in the torsion
group of A.
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We now return to BELLMAN’s problem as formulated in terms of
(n+ 1)-vectors. The formal logarithm of a vector in Lemma is given here by
the vector corresponding to the ordinary logarithm of the corresponding
function provided w,>0. That is
~__d'logu(t)
(log u) =22,
where the right side can be expressed in terms of wo,uy, ..., u;.
By the theorem and the fact that (for real u) the ,argument group”
A is {e, —e}, so that F(e)= F(—e)=0, and F(u)= F(ul); we now see
that the solution to BELLMAN’s functional equation

F(ur) = F(u)+ F(v)

is an additive function of the vector log |u| when u=£0, or

- 5

F(u)= Za; (%] a; additive.
Under suitable regularity conditions this reduces to
L d'log|ul
D ) [maiset. - 1 o
F(H) = 2a; dt .

2. Problems 15 and 17. We can reformulate these problems as
follows. In Problem 15 we associate as before with the n times differentiable
function u the vector (uo,...,u,). Now the linear differential operator

a(Hu+a()u’+ -+« +a.(Hu™ = (a, u)

is a scalar product. If we use the product uv defined in (1) we get a second

product defined by
(a,ur)=(a xu,v).

This product satisfies the conditions
(3) ax(uv)y=(axu)xv
(4) a X e=a, where e is the multiplicative identity of (1).
(5) (a X u)=fi(ao, ..., ax; to,...,Uu).

The problem was to find the most general >-multiplication which
satisfies equations (3), (4) and (5).

Problem 17 is essentially the same as Problem 15 except that the
coefficients and variables in the differential equation are now matrices and
that attention is restricted to first order differential equations.
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We subsume both problems in the following

Problem 2. Given a group (G, where the group operation for u,v € G
is denoted by wr. What are the possible operations a > u that can be defined
for u€ G and a € A, where A is some system of elements, so that a Xu€ A
and

3) ax(uv)y=(axu)xrv;
4) a % e=a, e the identity of G;

for all a€ A and all u, v€ G?

This problem was treated in the papers [1] and [3].

The solution of this problem becomes simple if we notice, as was done
in [3], that it can be interpreted as saying that G acts as a transformation
group on the space A. We can therefore decompose A into disjoint orbits
a % G={axulu€ G}. Each of these orbits can be represented by the right
cosets of the subgroup S of G which consists of the elements that leave a
fixed. Two subgroups S;, S: correspond to the same orbit if and only if
they are conjugate subgroups of G.

Conversely, G acts a transitive transformation group on the right cosets
of any subgroup S if we define (Su) > v=Suv. We can sum this up as
follows.

Theorem 2. The orbits a < G in A are determined by a subgroup S
of G and a one-to-one mapping h of the right cosets Su into A so that

h(S)=a and h(Su)—a X u.
That is
b > u= h(h™ (b)u)
for all b in aX G.

Returning now to BELLMAN’s Problem 15 we again introduce the formal
logarithm so that the multiplicative group G of vectors (uq,uy,...,u,) with
uy5=0 and multiplication defined by (1) is mapped onto the additive group
A’ of all vectors (ai,ai,...,a,).

The set of subgroups of A’ is very large; but the only ones, for which
the coset representative of a vector can be obtained by continuous functions
of its components, are the subspaces (see e.g. [6], p. 127, Example 33).
Let S be a k-dimensional subspace. Then it has a basis of the form

81:(0,..-,0, 1. SI,r',+l;---sSIM)
sez(O)I"IOJ veey 0: l! Sl).f'-_-LI! "'!52")

SJ‘":(O,...,O,...,O,..., 0} lssk,i‘}-ls --"s&'n)
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and the coset S+ u where u= (uo,...,u,) can therefore be given the rep-
resentative

U = u—u;, $'— (i, — u;,81:,) 8° — [thi,— Ui iy — (Ui, — Ui, $1i,) S2i, | — + -«

so that &#; =0 (j=1,...,k) and & is a (linear) function of uo,...,u for
l=0,...,n

Thus, if we write
(6) axu=—a-logu,

then conditions (3), (4) and (5) are satisfied. The isomorphic systems are

(7) a x u=h"(h(a)+ log u)

where h is a one-to-one mapping of A’ onto itself. If we want (7) to satisfy
(5) then we must restrict 2 by the conditions

(8) (h(ﬂ))x:h.'(ﬂn,...,ﬂe) (i=0, l,...,ﬂ).

This completes the solution of BELLMAN's Problem 15 if we restrict
ourselves to the case in which his functions f; are continuous in all variables.
For the sake of illustration we consider three examples.

Example 1. S— {0}. Here u=—u and (7) becomes

axu=h"(h(a)+log |u|)

which, coupled with condition (8), can be written in terms of components
as follows

(9) fol@o; u) = hi' (ho(ao) + log |ua|)

fiao, ar; uo, ) = hy' (h.,(a..)+ log |uo|, hi(ao, ay) + %]

f"!(a”’ a, s, Un, Uy, ug) =

= h:ll (hu(ﬂn) + lOg u, h;(ﬂn, al) - —? < h-_)(ﬂn, a, (J»_x) - o EI)

Uy uﬁ
fu(a, u) = h.'(ho(a)+ (log |u ), . . ., h.(a)+ (log |u]).),
where
h:l(fln(ﬂn), hl(ﬂn, 01), wu 63 h,-(a.;, Qtseins 0;)) =k (f — 0’ $hian n).
Example 2. § = {(uv, u,0,...,0)}. Here 4=(0,0, u2,...,u,) and (6)
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becomes

ﬁl(au; u") =
(10) fl(ﬂn, a,; Uo, Ui) =

fo(ao, ay, as; o, ty, ) = hs' [hl.(aa), hi(ao, ay), ha(ao, ai, as) + % — li'-]
o

iy

fﬂ(ar u):h;l(hu(a)i hl(a)’ h_’(a)+(log |U:)~_:, soey hrl (a) +(10g |u;)!l))
where the h; are as before.
Finally we consider an example for which § is not a subspace of A.
Example 3. Let A be a vector space over the complex numbers and
let S be the subgroup of vectors whose components are pure imaginary.

Then to each coset S+4u we can associate the representative
RKu=Ruy, Ku,, ..., Ru,). Thus (7) becomes

axu=~h"(h(a)+ & log u)
or in more detail

(11) fol@o; o) = hi' (ho(ao) + & log uo)
f1(ﬂn, ay, Uo, Hl) = h;l(hn(ﬂ’n)—f-‘éﬂ. |Og Uy, hl(ﬂ’u, 01)"'-‘15{ %I')

fo(a, u) = h'(ho(a) + & (log uo, ..., h.(a) + & (log u),),
where the h; are as before.

The group in Problem 17 is non-Abelian. Thus the analysis of its
subgroups — to which the problem has been reduced — is much more
complicated.

RemARk. Condition (4), while certainly implicit in BELLMAN’s problems,
is not necessary for our solution. If we define A®*—{a <ela€ A}, then
a* xe=a" for every a* € A*. The mapping a—a*=a xe is a projection
(idempotent mapping) of A onto A* such that a xu=a* xu for all u¢G.

Thus if we omit (4) then we can first determine the mapping
a—axe=a" as an arbitrary projection of A onto a subset A* and then
proceed as before with A replaced by A®.

3. Problem 16. Here we deal not with multiplication but with com-
position of functions. We can introduce the notation wow» for the vector
associated with the function »(«) so that

(12) (u o v); :% v(u®)=e:(u,, ..., u; 1, ..., v), fe=1,2,..40;

(U o f‘)‘_y — ".:-" ]
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where i = " (u(t)).
If we now define
(a,uocv)y=(a®u, ")
then the functional equation analogous to (3) is
3) a@(uor)=(@Ru)@ .
However, since we are only interested in the formal properties of the
product a @ u we can take notice of the fact that

(13) (@@ u=fi(ar, Quiry .. ., Qui Uy, Uzy oo oy Unikir), (el 2 005 R);
(0 ®H)n=ﬁ'n;

and that the relation (3’) remains valid with the same function f. if we
replace the product (12) by

(12’) (!I O'I‘);ZQ’((Hl,...,Uf;t‘],...,?‘.'), (fﬁl,z,...,n).

If we ignore the component u, and restrict attention to vectors with
u,==0 then (12°) defines a group and the relation

(3" a® o' v)=(@R@u) R,

where we ignore the component a,, subsumes this problem in our Problem 2.
The problem thus reduces to the study of the subgroup of the non-Abelian
group defined by (12').
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