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Some probability problems in inventory control*)
By P. D. FINCH (Melbourne)

§ 1. Introduction

We consider the following inventory model which we call the infinite
bin system of inventory control.

Demands for an item occur at the instants f#,%,...,%,,... such that
the v, =t ,—t,..,n=1,2,..., 40, are independently and identically dis-
tributed non-negative random variables with common distribution function

o1

A(x) and finite expectation « = |di(1c) Initially N items are held in stock

and the demand process {f,} is ahuut to start. After every k-th demand an

order for a further & items is placed. There is given a sequence {x,}, n=—1,2, ...

of independently and identically distributed non-negative random variables
(s a]

with common distribution function L(x) and finite expectation [ I.de(x).

., 1s the lead time of the n-th order, that is the time interval from the instant
t.. at which the order is placed until delivery of that order is made. Demands
which occur when stock is on hand are satisfied immediately, demands which
occur when stock is not on hand are held and are satisfied from subsequent
deliveries. Thus no demand is lost and negative inventories can be held.

Define random variables Z(f) and 2(f) as follows: at time ¢ let the
number of outstanding orders be &(f) and let the number of demands which
have occured since the last order was placed be 2(f). (5(f)=0,1,...k—1).
Define a random variable »(f) by the following equation

(1) n(t) — () -+ kE(D).
The random variable i (f) assumes the values 0,1,2,... and will be called
the stock deficit at time 7. Let S(f) be the inventory level at time ¢, then

(2) S(t) = N—y(1).

*) This paper was written under a grant from the Ford Foundation when the author
was a member of the Research Techniques Division of the London School of Economics.
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If O0=n(f)<N then stock is on hand, if »(f)=N no stock on hand and
a negative inventory is held if #(f) > N.

In inventory problems interest is often centred on fluctuations in the stock
level S(f) and in this paper we study the processes {5(f)}, |&(f)} and |<(f)}.

The model will be denoted by the symbol G(G)k where the first letter
refers to the distribution of the demand process and the second letter to the
distribution of the lead time and &k, defined above, is the reorder quantity.
The letter G refers to a general distribution. The following symbols will be
used. M a negative exponential distribution, £, an Erlang m-distribution, D
the degenerate distribution of a random variable which is constant with proba-
bility 1. Thus for example the model E,,(D)k refers to the model described above
in which the demand process is an Erlang E,, process and the lead time is
constant.

The following is a summary of the contents of this paper.

Section 2. The existence of the limiting distribution for »(¢) in G(G)k
is established when the demand distribution is not a lattice distribution and
recurrence relations enabling this distribution to be obtained are given. Ex-
pressions for the mean and variance of the distribution are obtained. These
expressions are simplified for the special cases G(E,)k (m=>1) and G(M)k,
finally the limiting distribution of {S(#)} is shewn to be uniform.

Section 3. We consider G(M)k in detail. If the demand distribution is
not a lattice distribution an explicit expression for the limiting distribution
of #(f) is obtained and for the limiting distribution of stock deficit at the
instants a demand occurs. An explicit expression for the Laplace transform
of the generating function of the distribution of #(f) is obtained.

Section 4. We consider D(G)k and obtain the generating function of
the distribution of stock deficit on the n-th demand, and obtain the mean
and variance of this distribution. For D(M)k we obtain the limiting distribu-
tion of stock deficit at a demand.

Section 5. We obtain first the (limiting) mean value of stock deficit at
a demand in G(G)k. For G(D)k we obtain formulae for the distribution of
stock deficit at the n-th demand and the limiting distribution of »(f) when
the demand distribution is not a lattice distribution. For E,.(D)k we obtain
explicit expressions for these distributions.

Some of the results obtained below seem to be the same as results
which KARLIN and ScArr [4] and SCARF [6] state can be obtained (but do not
do so) in their discussion of the model G(M)k. The case k-1 corresponds
to the results obtained by TAkAcs [7]. We remark that the model M(D)k
has been considered by PITT [5].
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§ 2. The process [5(f)! in G(G)k

The distribution of the random variable (f) does not depend on N
the initial stock level. Thus define f(u, x) by

fln,x)=1 #f O0=sa<x

— 0 otherwise
then

© k-1

(3) l‘:(f)-‘ k lff(f-—f,,..'., ) T 42: ‘2‘1f(r_rmkvn, r(ui-ljk'nl_rmk-.-l)-
m=1 1

m=l] u=

Suppose conditionally that f,-—x. Then from (3) we obtain (an can
also be seen intuitively),

@) n(t) = r(t) if t<x
=n'(t—x)+k if x=t<x+x
7' (t—x) if x4+um=t

where »(f) is the number of demands in (0,7) and »*(f) has the same dis-
tribution as #(f) and is independent of .

Let AU)(x) be the j-th-fold iterated convolution of the distribution
function A(x) with itself. Then for j-=0,1,... k—1

P(e(t) = J, tu > 1) = P(e(t) = j)
— AV ()— AUN(1).
Write P:(f) @ =j, j=0,1,2,... then from (4) we obtain

B)  Pt)— AN+ A0 + | Pt—X)L(t—X)dAD(x) j=0,1,... k—I
(6) Pi(t)- .|'[P.-(r—x)1.(r~_x)+Pf_,.-(t—x){1~L(f—x):ldf4”"(-\')
J=kk+1,....

Write G(t,2) — Elz""} = > P,(t)z". From (5) and (6) we obtain

k-1 . , _ 4

G(t, 2)=— ; {AV(E)— AU(8)} & - | G(t—x,2) [2*+(1—2")L(t—x)]|d A" (x).
(7)

Introduce the binomial moments B,(f) of the distribution {P;(¢); defined by

B.At)- 1—£}Gaa1|

r!
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so that L 8
®) CXORD L LXO)

Introduce the following notation
=18 5
(9) fp,(f) ——Z( -i‘ J {A(_;'J(f)_,_,Ai_aH:(t)}

M (x)= > AtH(x),
II—I
We prove the following theorem.

Theorem 1. The binomial moments B,(t) exist and can be obtained
from the following recurrence relations, B,(t)— 1 and

B.(t) — D,(t) + | D, (t—x)dMy(x) +

il -+-;|’.[1—L(f—x)] (‘;‘ | Brst—2)+ -+ f )Bn(r—x)_ d M, (x)
R R
B,.(r)z_‘]?[l—!,(t—x)] “ fr]b’,....(f——x) 5 +(1‘ | B, (t—x) | d M (x)
(11) r=kk+1,....
Further :
(12) P—2 |80

Proor. Differentiation of (7) with respect to z and placing z =1 gives

B.(t) = ®,(t)+ | B,(t—x)dAO(x)+

+ ) 1—L(t—x)]

( : ) Bra(t—x)+ -+ f] Bu(t—x)|d A®(x)
r=12...k—1

B.(t) = | B.(t—x)d A" (x) +

+] 11— @—) [ (¥ )Bst—0) -+ | B, . (t—01aA» ).
r=k k41,...
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These are linear integral equations of the Volterra type and equations (10)
and (11) follow in the usual way.

It remains to prove equation (12). To do so we require the following lemma.

Lemma 1. There exists a positive constant K such that

Kl'-‘-l

]3 Bat _:J' T A RER
(13) O=Grhr
Because of (13) equation (8) can be inverted to give (12).

ProOF. Write Q.(f) == P..(t)-+ +++ 4+ P.i—i(f). From equations (5) and
(6) we have

g Qu(t) = 1—AO(®) + | Qut— X)L (t—x)d A (x)

(14) t
’_ Qu ()= | [Q.(t—x)L(t—x)+ Q-1 (f—Xx)1—L(t—x)]d A" (x).
Write F(t,2) = Q (t)z" and let D,(f) defined by
1| d
D) = o ,dz‘ F(t, 2) ;s

be the r-th binomial moment of the distribution {Q,(#)}.
From equations (14) we obtain

t

(15) D,(t) = | D,s(t—x) [1— L (t—X)|d Mi(x).

It follows from (15) that there exists a positive constant C such that
(16) D.(t)=C'/r!

There is clearly no loss of generalily in supposing that C > 1.
The following proof of (16) is due to TakAcs [7]. From (15) we have

D.-(:‘)—-- H | [1—L({ts— )] [1—L(t—t))dM;(t)- - -d M. (1,).
Let &2 be a fixed posntivc number, write K(x)- L(x—Hh). Since M, (t-+-h)—
—M.()=1-+-M,(h) for all t=0 we obtain

p.(n=[1t “—”*—(-"—)] | | |[]—h’(x1)] [—K(x)dx;+-dx,

I

(h i

l 1+M(h)) \I (l—K(x)) = 1+M,.(h)
\ r!
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This proves (16). We have
Dy~ 2" Q.

and in virtue of (16) this equation can be inverted to give

&, e[/
Q.(1) :é‘_(_) (r )D... (®).
Hence using (16) again we obtain

(a7 Q=5 e

From equation (8) we obtain for u=0,0=w< k—1

Bawnl)= 3 (u . w] P,(t)

k-1 )
o= N (@ ts)k+r
-— T Qtf (t H ( uk+ “’ l

T
s=I} =

. (u+s+1)k
= ZHQ (f)(uk-{—w—}-]
in virtue of the identity

'm—{—r) ( m+-k+1
o~ ]\ ‘m+1
Using (17) we obtain
= P o \wC Wu+s+ 1)kj!s!
Bue ) = (wk+w+ DS s (u+s)H{(s+ Dk—w—1}"
Note that for s =0

W(u+s+1)k}!s!
(u+s)(s+ l)k—w—l]'

K N k 1l
u-:—s) (!_{_u_-ﬁ‘]g——l'_)J {1 47 1 |lj‘l'l' %]

(Zk)““. w1 S--+l

gt okt | 14

and that
K- F1R . o 2 i
ulk—w—1)! — 8 )
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)

Write L=e"|14 > ss(;,' ]>C then we obtain
a=I1 .

BRI GRIPTTT
Bisw()=+—— < 7 ——
(uk+w+41)! = (uk+w-+1)!
since L>C> 1.
This proves lemma 1.
From Theorem 1 we can deduce the existence of a limiting distribution

P;=lim Pi(#). In fact we have

Theorem 2. If A(x) is not a lattice distribution the limiting distri-
bution P;=1im Pi(t), j-0,1,... exists, is independent of the initial distri-

n=r o

bution of 1,(0) and
(18) P,=2/(—)7B,

where B, is the r-th binomial moment of distribution |P;} and can be deter-
mined as follows: B,=— 1 and

s I o (I PR e
TR E O
o B, ;?lf_c.l‘“_[‘(x)] |“‘ ) B,1()+ - + “:]B g (x)]dx

r=kk+1,....

Theorem 2 follows from Theorem 1 by the application of the following
lemma which follows from a theorem of D. BLACKWELL [1].

Lemma 2. [f g(t) is a function of bounded variation in (0, ~),¢< ~,
and A(x) is not a lattice distribution, then

! o

(21) lim ‘g(t——x)dM;..(x) = % ].g(x)dx.

f—»m o/
1"

The proof of Theorem 2 is similar to the proof of Theorem 3 of TAkACs
[7} which corresponds to the case k=1 and will be omitted. We remark
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that the first term of (19) arises from the equations
lim @.(t)—0

-+

:D k-1,
- \"‘ " S
O, (u)du—e 3 ( /)=
which follow easily from (9).
Denote by M and D" the mean and variance of the distribution |7} then
M— B, and D*—2B,+B,—(B,}". From (19)

o
r-1

k—1 [
(22) =51, 1
(23) = — l (11— L(u)} B,(n)du + 1(“ s (k—1 )]_g‘_z)
where

(24)  Bi(t)— P,(t)+ | D(t—x)dM(x)+ k| {1—L(t—x)} d My (x).

Equation (22) can be derived also by the following heuristic argument.
Demands for the item occur at the rate 1/« and the average time from the
instant a demand occurs until the next order is placed is «(k—1)/2; the
average time until that order is delivered is /. Thus the mean stock deficit is
k—1 I
g

In some cases of practical importance it is possible to simplify the
expression for D*. For example this is so when the lead time distribution
L(x) is an Erlang E,, distribution, that is, when

(25) L(x)=1—e" 'l+t;]\%-"" . ((“x))—ll x=0,m=1.

Introduce the following notation:

e(s) = ‘|'e“" dA(x)

3(s) = |e—- dB,(x)

d g (s)
ds" s

A

We prove the following theorem.
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Theorem 3. If the distribution of lead time is given by (25) then
le—l) _(k—1)(k—2) _ 2'53(=) _w

(26) DA — e e T = = N ("
and v,(s) is given explicitly by

= “(S) B SSS [0 ) 8
e MOTI—E T (1 sty el

PROOF. Since
A(s) = (—) | x Bi(x)edx
0

equation (26) follows from (23) and (25).
Introduce the Laplece transform f,(s) defined by

fi(5) = | e d d,(x).

From (24) we obtain

o TR g . SRR 1
(28) S/!(S)-- - __'a-';') _'hk_lT(S)}"']—(]-}-sl)“:_ .

From (9) we obtain f,(s), namely
(29) £1(8) = [a(s)—k{ee(s)} + (k—1) {e () [1—e(s)].
Equation (27) follows from (28) and (29).

EXAMPLE. If m — 1, Theorem 3 gives

, Ne—D) | (k—1)(k—2) 2y, e
(30) 2 2 T 12 « 1.__.1(;({ o k]—{fc(lﬁl)}k'

If, in particular, the demand process is Poisson, that is e«(s)= (1 -+se)’

we obtain

- i l04e)  (k-—NG—2) &
(31) e e o w8

When k=1, equation (22) gives M- [ «. This is the result obtained by

TAKACS [7]. Applying this result to the input process {f..}, n=0,1,... we

have lim M(&(f)) = '«k where M(-) denotes the expectation. From (1) and
[

(22) it lollows that lim M(<(?)) = (k—1)/2. Introduce the following notation:

S (f) = :: Pivin(t), w=0,1,...k—1, then S.(f)= P(E(f)=w), we have

the following theorem.
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Theorem 4. If A(x) is not a lattice distribution the limiting distribution
S.=1im S..(f) exists and is uniform, that is S, =—1/k, w=0,1,...k—1.

t>»m

ProOOF. From equations (5) and (6) we obtain

(32) S.(t) = A () — ACD(8) + | S, (t—x)dA®(x).

Hence
t

(33) S..(t) = A (t)— A" D(f) + j {A"(t—x)— A"V (t—x)) dM,.(x).
The theorem follows from (33) by the application of lemma 2, since

(v o}

' (A (x) — At )(x)}d x = e.

Define random variables 3(f) as follows: 2;(¢)=1 if 5(t)=j, 3;(t)=0
t

if p(t)s=j4, j=0,1,.... Write b;(f)- J.,S}-(u)du then b;(f) is the total time

1]
t

in (0,?) that the stock deficit is equal to j. Since M{b,(t)} — ' Mip(u)du)

we have
Mo, (1)) — | Pi(wydu
and if A(x) is not a lattice distribution then

iimM--‘-’%@ =P;.

t—»co

§ 3. The model G(M)k

In this section we suppose that the distribution of lead time is given
by (25) with m=1, that is, L(x)=1—e"", for x=0. In this case it is
possible to derive an explicit solution for the distribution 2, by a method
similar to that of TAKACs [7] for the case k- 1.

Define random variables &, (w), n=0,1,..., w=0,1,...k—1 by the
equations & (W)=E&(huiws1—0), n=1,2,...; w=0,1,2,...k—1, Write
Rij(w)=P{E.(w)=j}, j=0,1,2,.... It is easy to see that for fixed w the
sequence of random variables {&.(w)}, n=1,2,... forms a Markov chain.
By means of the theorem of FOSTER [3] it is easy to see that this chain is
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ergodic and that limiting probabilities R(w)=-lim R;(w) exist and satisfy

the following equations

(34) R;(0) — 2-_,11?;(1{—1)1’;_,1_.,- j=0,1,2,...
(35) Riw)=2 Ri(w—1)P,;, w=1,2,...k—1;j=0,1,2,...
where -

P,j= ( ; ) ‘ eins(1—er)IdA(x)  i=j=0,1,2,...
e
=0 otherwise.

Write U(w, z) — > R,(w)z' then from (34) and (35) we obtain
=0

(36) U@©,2) = _.'(l—e'-”-" +ze"YU(k—1, 1—e " 4 ze*)d A(x)
(37) U(w, 2) :_l. Uw—1,1—e " +2e")dA(x) w=12,...k—1.
Introduce the binomial moments C.(w) defined by

ey 4
C,-(w)—-:—r—! ?;-; U(w,z)z: 1 w=0,1,...k—1.

We prowe the following theorem.
Theorem 5. The limiting distribution {R;(w)} is given by

(38) Ri(w) = Z(—)(; ]c..(w) FIS R B
where ' |

A S (@) i by e
(39) C.(w)= e i— () (e, ) w=0,1,...k—1
and
(40) ;= | e dA(x).

Proor. From (36) and (37) we obtain
(41) C.(0)=[C/(k—1)+C,aik—D)]e,. r=1,2,...
(42) C.(w)=ea.C(w—1) w=12...k—1.
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From (41) and (42) together with Cy(w)=1, w—=0,1,...k—1 we obtain
(39). To prove (38) we remark that lim C,(w)/C,—;(w) -0 since lim e, — 0.

<A .
Thus U(w, 2) = > C.(w)(z—1)" converges for every z and hence

@

> () cum

=l "=y

&
dz
We shall prove next the following theorem.

Theorem 6. If A(x) is not a lattice distribution the limiting distribution
|P;} can be obtained from the following equation

1

R_;(W) s f_'_ U(W, Z)

13, L u=12,...
£+ Pone=panm sy RW—RW—1)} 1o k-1
Ry(0 1<
(44) Pi, — k“(”z e ];i (R.1(k—1)—R.0)} u=1,2,....
(45) P. }{—_‘:Pﬁ,.... w=0,1,...k—1.
=1

PROOF. Let us say that the system is in the state £, .., u—0,1,2,...,
w=0,1,... k—1 if u orders are outstanding and w demands have occurred
since the last order was placed (E.;. = E.1.0). The possible state transitions
are Eiw—vEusu, 0=1,2,..., wa=01,...k~=1 and E,.~>E.u1,
=01, ..., #==QL }. 2 ..::

Let M, . (f) be the expectation of the number of transitions E, . —E, ..
occurring in the time interal (0,7) and N, .(f) be the expectation of the
number of transitions E,, -»E. , occurring in the time interval (0, f). Suppose
for simplicity that »(0)= O then for u—1,2,...,w=0,1,...k—1 we have

(46) M, (8)—[Nuwir(®) + Nesa () 4+ o+ + Niviny o ()] = P(5(t) = ku + w)
and for u—0, w—0,1,... k—1 we have
(47) Mo (£)—[Nro(t) +Nia(f) + - -+ Ny (D] = P (t) = w).

We require the following two lemmas.

Lemma 3. If A(x) is not a lattice distribution then

(48) tim Newr ()

t-»co f

Lemma 4. [f A(x) is not a lattice distribution then

. M. () R.(w)
() If“.p,‘r . R

= Ul Pyive J=1,2,... w=01,,..5k—]

u=01,... w=0,1,...k—1
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In order to prove lemma 3 we note that
N..(t+0t)= N, .(t) —pwuP(n(t)— ku+ w)ot-{ 0(dt).

Hence N, .(t) = uuPy...(1).
By Theorem 2lim N, (t)= nuP,,. .., exists if A(x) is not a lattice

t-rm

distribution and hence we have (48).

In order to prove lemma 4 we remark that the time intervals between
consecutive transitions E,,—E, .1 are independent and identically distri-
buted non-negative random variables. Thus by the elementary renewal theorem
of DooB [2] the limit (49) exists and equals the reciprocal of the expectation
of the time interval between consecutive transitions E,,—FE, ... These
transitions occur at the instants #.,...,,n=1,2,... and the state E, . is
a recurrent state and the expectation of the time interval between each step
is k«. Thus (49) follows by the elementary renewal theorem referred to above.
From lemmas 3 and 4 and equations (46), (47) we obtain

R.(w) = ke[nulPrwir+ - + Piwsra) + 0@+ 1) {Prosy + -+ + Piginent]
(50) u=0,12,...w=0,1,...k—1.
Equations (43) and (44) follow readily from (50). Equation (45) follows from

Theorem 4.
When L(x)=1—e",x=0 we have from (7)

k-1 %
Gt 2) = 2HAND—AT 1 (0}2 + | Glt—x, 2){1—(1—2)e ) }d AV ().
(51) = y

Introduce the following notation

o
w(s, 2) — | e G(t, 2)dt

[+1]

a(s)— | edA(b).

We shall prove the following theorem.

Theorem 7. The Laplace transform (s, z) of the generating function
of the probabilities P,(f) is given by

(52) (s, 2) = H(s, 2) f,-‘?.( Y (1—2*) ﬂ(s+,_u,z)g =G 1h
where

k-1
(53) 8(s, 2) = ——28)_ 3" ssi(s)
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Proor. From (51) we have
. -, i ™. (1—2*)a*(s) ;
(s, 2) = 0(s, 2) T Ww(s -+ u, 2).
Using this formulae successively and noting that lim w(s+ng, 2) =0 we
obtain (51). '

§ 4. The model D(G)k

In this section we suppose that demands for the item held in stock
occur at the instants #,=—ne¢, n=1,2,... . Suppose that initially #(0)—=0,
and introduce random variables &.(w,p), n=1,2,...; w=0,1,...k—1;
0=p@<1 defined by the equation &.(w,d)=&{(kn+w-1-+3)e—0}. Then
we have

(=0 if n<(w+1+9)e

= g * i
(54) &l(w’ J'f) s 1§ Zlg(w_jr_l)l‘j))“ _Or 1;---!\ 1.

More generally for n>1 we have

(55)  E.(w, A)=E...(w, 3 if m<[n—0)k+w+1+7)e
w=0,1,...k—1
Eaw, )41 if m=[(n—Dk+w+1+8e

where &,.,(w,3) has the same distribution az &, ,(w,3) and is independent
of », the lead time of the first order.

Write Rj(w,8)=P{&.(w,8)=j},n=1, w=0,1,...k—1,j=0,1,2,..,
and let U"(w, 3, 2) be the generating function of the distribution [R}(w, ?)|

(56) Uu(w} -3! Z) — j R?(W! "J’)zj'

We prove the following theorem.
Theorem 8. The generating function U"(w, 3, 2) is given explicitly by

(57) U"(w, .'),, Z) — I_’] [Lwi—ljmrr'- 1+ 1“ 2(1 ‘—L|m_[).(-+u ,},p)]

where L, = L(me). Further U(w, 3,z)=1lim U"(w, 3, 2) exists is a generating
H=»m
function and is given explicitly by

(58) U (w, 8, 2) = I]IILM—W. ruet1rg F 2(1— Ln=tiryies18)]
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There exists a limiting distribution R;(w, 3)= lim R; (w, 3) and

(59) Uw, 8, 2) = > Ri(w, 3)2'.

PrOOF. From (54) we obtain
(60) U'(w, 3, 2) = [Luasa+2(1—L.s1.5)]
and from (55) for n>1,j=1,2,...
R“:(w! ﬁ) — L[n—llk+rr'~l+{3 Rll}l_ l(wv P’)

R} (W, 8) = Liu-tpescies s R ™ 0, 8) + [1—Luoyecwin-a RIS (W, 3)).
Hence
(61) U'(w, 3, 2): [L(..-m.-.»-u-ﬂ+Z(|—Liu-m.--u.1-ﬁ)]U”_l(w, 3, 2)
(57) follows at once from (60) and (61).

e [0,

Since > (1—L., *il/c:‘l‘{l—L(a)}dug.l-ch (1—L(u)}du—l/e the

m—1

series > (1—Li-1-ns1:p) is convergent and it follows that U(w, 3, z)

m=—1

exists and is given by the infinite produce expansion (58).

Since U(w, 8, 1)=1 it follows from the continuity theorem for generat-
ing function that U(w, 3, 1) is a generating function, that the limiting proba-
bilities R;(w, 7) exist and that (59) holds.

If M.(w,B), Di(w,3) are the mean and variance respectively of the
distribution R;(w, ) then from (57) we obtain

(62) J'wn(“’s 1'#) = Z [1"_L|m-1|-'r-"'-l--ﬁ]
m—1
(63) Di(w, 3)~— ;: Lon-turesssp]l —Los-tinsnsrag):
EXAMPLE. In the case L(x)=—1—e™*, x>0 we have
64 M 0) — e~ (w+D) l—ad
(64) (W, 0) =e T—e
5 ) ek l _e—2uugd.'
. — p=wpi(41) £ o | — p2apfre+1)
and
(66) lim M. (w, 0) = e~ (=[] —e ]!

LR 1 4]

(67) hm D.ﬁ(“’, 0) =il e—a'_m_u +]l[ 1 _e—n_ui.']—l _e—‘_’ﬁ_uu--~1l[l_e~:.'a_|1k]—l-
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It is easily verified that (66) and (67) agree with the mean and variance
of the limiting distribution R;(w,0) calculated from formula (39).

In order to prove the equivalence of the expressions (59) and (38) for
the case @= 0 of this example we return to equations (36) and (38) which
take the form

(68) U@0,0,2)=(1—er«+ze*)yU(k—1, 0, 1 —e1e 4 2e7"%)
(69) Uw,0,2)=Uw—1,0,1—e "+ ze " w=12,...k—1.
From these equations we obtain
(70) U(k—1,0, 2) == (1—e e 4 ze ey U(k—1, 0, 1 —e-""e |- 2¢-41e)
(1) Uw,0,2)=U(k—1,0, 1 —e*--Nra | zelk-ir-l)na) w=12,...k—1.
From (70) we obtain

U(k—1,0, 2)— _!?(1—e~’='-' G o)

and hence from (71)

U(—‘v’o, z) II.[]_e.uu:[m—lp.---']: _f_ze—.-.rﬂ':lm—hf.‘u-]:]-
1

L

These expressions agree with (58).
Conversely for D(M)k we can obtain expressions for the binomial moments
C,(w, p) of the limiting distribution R;(w, 5). Thus from (58) we obtain

(72) U(©, 3, 2) =(1—er=+) | zeraiP U (k—1, B, 1—e"* 4 2¢+%)

(73) Uw, 8, 2) = U(w—1, 8, 1 —e "+ ze™"). w=12,...k—1
Writing C,(w, 3)- rll : ;7 U(w, 3, z): we obtain as in the proof of
H 1

Theorem 5
74 R ; \{-‘::‘ i r-, C 3 w 01,...k—1
(1) W )= (=) (j A2 S\
where

2 e—‘r,"-‘ﬂ-' ) W= 0, 1, .. k—l

Y p-uakj i ; e =1 =)

(75) C(w,p)=c¢ ‘!! - (( el R,

§ 5. The model G(D)k

When the demand process is a general renewal process the method of
the last section breaks down and the determination of the distribution |[R} (w))
appears to be very difficulf. It is possible however to obtain an expression
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for the mean of the distribution in the general case and when the lead time
is constant to obtain the distribution {R;(w)} explicitly and we shall do so
in this section.
We suppose that 2(0)— 0. Write &,(w)= &(f.+ns1—0) and R/ (w)-
PE.W)=j),j=0,1,...,n=1,2,...,w=0, 1,... k—1. Introduce random
variables 5, .(w) defined as follows:

II

0,
1,
: 1

yoook—1

;'J;',,. =0 if xi<< fak st — 1k
PR

l if "/'.f = rurl-"'—!__r_ﬂ.-

NN -

(76) J
n-=

¥ g ree s

Introduce the following notation:

(77) b, (W) = |A” T(x)dL(x)

where A" (x) is the m-th-fold lterated convolution of A(x) with itself.
N!_‘,, (X) § N\ Amli.. l(x)

—
m—l

(78) _ .
= AT ()4 | AT (x—)d Mu(y)

s o}
where M, (y)=— l A" (y) is the renewal function of the renewal process

thal, =1, 2, .
Finally let us remark that

(79) En(W) =2 B
1

=
The following theorem is an immediate consequence of equation (79)
and the above definitions.

Theorem 9. The expectation M(E,(w)) of &.(w) is given by

(80) MIE (w)) ;‘ b, (w).

Further lim M|, (w)} exists and is given by
=00
w

(81) lim M{E, (W)} = | N (x)dL(x).

The variance of &,(w) can be obtained in principle from (79) and the
expectations M(3,.,(W)31..(W)), j+i=n given by

(82)  M(3. ()3 (W) = [ [[1—L () A" (x—p)d A0 (p) = 1d L ()

D17
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It does not seem possible to obtain a simple formula for the variance
of &.(w) in the general case. When the lead time is a contant, /, however
we obtain from (82) or direct from (76)

(83) M3, (W) i (W)} = M{B.(W)} J=j+i=n.

It follows that M{g8 . (W)@, .(w)} == M{8,.(W)}, j+i=n, for all positive r,
s and hence we can in principle obtain all the moment of the distribution
IR} (w)} from (79). In this case however it is simpler to return to equations
(76) and (79). We prove the following theorem.

Theorem 10. If the lead time is a constant then the distribution
IR (W)}, w=0,1,...k—1 is given explicitly by
Ro(w)=1—A"" ()
(84) Ri(w)= A" @O—A ) j=1,2,...0—1
Ri(w) = A" (),

The limiting distribution R;(w) = lim R;(w) exists and is given by

(B vl

Ri(w) = 1—A""(1)

(85) , :
R{.(w) A A:,;—l)m»-q(1)_A.;L+n-—|(1) j=12,....
PROOF. If the lead time is constant then 3;,—1 implies By, -~
= f..= 1. Thus from (79)
(86) PE.(W)=m)=P(Bu-ni1(W) = 1)—Altr-Diteii(]) m=—1,2, ... n

Equations (84) and (85) follow at once from (86).
EXAMPLE. Suppose that A(x) is an Erlang E,, distribution, m = 1, that is,

, m-1
A(X)=1—e"*|1] -f-%- + ... +(_ml—l)'(%] ] Write o—I/a then we obtain

(res1han -1

Ri(w)—e™® D o's!

=0

l_;'k--—u‘_—_llru 1

(87) Rwy=—e? D  o%s! Fe=1, 2 .o m1

i :1,’ -l_lk-i-ur'il} i

{(n -1y k41 : m-1

R.(w)—¢* 5 0*/s!
N i
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and

te+1)m -1
¥

Ry(w)=e® o°/s!

—
=0

(88) e u-!-_l:m 1
Rwy=et 2 ofst j=1.

& ll_J'-l'l.*-'*—*#'fl:m

When the lead time is constant it is possible to derive explicit expressions
for the limiting probabilities P;=lim P;(f) of the random variable defined

by equation (1). Namely we have

Theorem 11. If the lead time is constant, then

A" H—A"" if t<l

(B}

P.()= )A“'(r)uA"*‘(r)Jr_l' [A"(t—y)— A" (t—pdM(y) if t>1

w=0, 1,...,k—1
and Jfor j—1,2,...;; W=0, 1, ..., #=1

(Are-amig i

R e e e
L ARG — ) dM(y) if L.

Where M,(y)- N A™(y) is the renewal function of the renewal Process
=1

ttwt, n=1,2,.... Further, if A(x) is not a lattice distribution then there
exist limiting probabilities P;— lim P;(t), j —=0,1,2,... given explicitly by
>

!

] ] g A+l _ .
2 k_k_{_f ;! [A (u‘) A (H)]dll w=0,1,...k—1
©1) |
P = i | [ 857 () — A 1541 () — A () -+ A ()

§ o= N .
w=0,1,...,k—1.

PROOF. Suppose first that ¢ </, then »(f)--n if and only if exactly n
demands occur in (0, ) and the probability of this is just [A"(f)— A" (#)!.
Suppose next that >/, then »(f)=w, w=0,1, ...k—1 if and only if either
exactly w demands occur in (0, f) or the nk-th demand n- 1,2,... occurs
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at t,,= y in (0, t—/) and exactly w demands occur in (y,#). Thus for =1

-1
Put)= A" (O)—A" O+ 2 [ [A" (t—p)— A" ((—p)}dA" ()
n=l g
and this establishes the second of equations (89).
To establish the second of equations (90) when ¢/ let &,(f) denote
the event [#5(f)= mk-+w] and write & (f) — Ij_s.,.(t). The event & (f) can

m=j

occur if and only if an (nk)-th demand n—=1,2,... occurs at f,=-y in
(t—1, t) and exactly (j—1)k-+w further demands occur in (y, ). Thus

© t-1

—

2 Puire(t) = [AU-DF (f—y)— AG-Dkses1 (t— y)] d My ()
me=) i
and this establishes the second of equations (90).

If A(x) is not a lattice distribution the existence of the limiting distri-
bution {P;} has been proved in Theorem 1 when the lead time is general.
The existence of the distribution can be proved in the special case of this
theorem by a direct application of lemma 2 to equations (89) and (90). By
means of lemma 2 we obtain the limiting distribution explicitly in the equa-
tions (91).

ExAMPLE. Suppose that the d.f. A(x) is an Erlang E, distribution
as in the example to Theorem 10. Then we obtain

1 ] (re+1)m—1 g 9 !,.-‘ N ;
=% 2 |l g)e

i . i
(- D441 -1
L } 'l

m g ¢
— l \1 . {j‘ =
;21_,! Poii= _k .o |]_(‘] 1_1_.!._1_.,,+:g!e o

\;{(r 1) 4u =|u

]

D
(92)

In the particular case the demand process is Poisson, that is m=1
we obtain

Prawset ol a1, 0 k=1
gk

93 = .
( ) P. ; _,l_e—g %" o°/s! = 1»2;--.;
Tk i Iu:“_‘]ﬁ!%“‘l. [ w ;_-,_-O’ 1:--—k—l.

Equation (93) is equivalent to result of Prt1’s lemma 1, PITT [5].
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