On the maximum terms of an entire function and its derivatives

By T. V. LAKSHMINARASIMHAN (Tambaram, India)

1. Introduction. Let f(z) be an entire function represented by the series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

of order ϱ and lower order $\lambda(0 \le \lambda, \varrho \le \infty)$. On the circle |z| = r, let M(r)be the maximum modulus of f(z), $\mu(r)$ the maximum term of f(z) and $\nu(r)$ the rank of the maximum term. Let $M_i(r)$, $\mu_i(r)$ and $\nu_i(r)$ be defined for the derivative $f^{(j)}(z)$, $j=1,2,3,\ldots$, exactly as $M_0(r) \equiv M(r)$, $\mu_0(r) \equiv \mu(r)$ and $v_0(r) \equiv v(r)$ for f(z). Then it is known that there are asymptotic properties of $\mu_i(r)$, $j \ge 0$, as $r \to \infty$, analogous to certain properties of $M_i(r)$, $j \ge 0$. For instance, there is (a) S. K. Singh's relation between $\mu_1(r)$, $\mu(r)$ and either o or λ ([3] Corollary (i) of Theorem 1, Corollary (ii) of Theorem 2) analogous to S. M. Shah's relation between $M_1(r)$, M(r) and either ϱ or λ ([2], Theorems A, B), (b) S. K. Singh's inequality connecting $\mu(r)$ and its derivative $\mu'(r)$ ([4], Theorem 4) which is the pseudo-analogue of VIJAYARAGHAVAN's inequality [7] connecting M(r) and $M_1(r)$. It is the main object of this note, firstly, to simplify the proof of S. K. Singh's $\mu(r)$ -analogue mentioned in (a) and to extend this analogue to $\mu_i(r)$, $j \ge 2$ (Theorem 1 below), secondly, to obtain an inequality (Theorem 2) connecting $\mu_i(r)$ and $\mu(r)$ which reduces to a precise analogue of VIJAYARAGHAVAN's inequality in the case j=1. The remaining results of this note (Theorems 3 and 4) are supplementary.

2. Theorems. The following lemmas, required for the proofs of our theorems, are known results.

Lemma 1. (i) If f(z) is an entire function then the order (or lower order) of every derivative $f^{(j)}(z)$ is the same as that of f(z).

(ii) In (i) the order ϱ (or lower order λ) of f(z) and $f^{(j)}(z)$, j = 1, 2, 3, ..., is given, in terms of $v_i(r)$ as defined at the outset, by the formulae:

$$\limsup_{r \to \infty} \frac{v_j(r)}{\log r} = \varrho, \qquad j = 0, 1, 2, \dots$$

$$\left(\text{or } \liminf_{r \to \infty} \frac{v_j(r)}{\log r} = \lambda, \qquad j = 0, 1, 2, \dots \right)$$

PROOF. (i) The result for the lower order λ , like that for the order ϱ , follows from a familiar relation between M(r) and $M_1(r)$ ([6], p. 35, relation 2.13).

(ii) In the case j = 1, the results for both ϱ and λ are known ([6], p. 34, and [8], Theorem 1). In the case $j \ge 2$, the result follows from (i).

Lemma 2. In the notation explained in the beginning we have, for any entire function,

(2)
$$r_j(r) \leq r \frac{\mu_{j+1}(r)}{\mu_j(r)} \leq r_{j+1}(r), \qquad j = 0, 1, 2, \dots$$

PROOF. The second half of (2) for j = 0 is given by Valiron ([6], p. 35) while (2) in its entirety is indicated by Q. I. RAHMAN ([1], p. 42, relation (7)). The proof requires only definitions. For, writing

$$f^{(j)}(z) = \sum A_n z^n$$
, $v_j(r) = N$, $v_{j+1}(r) = N_1$,

we get

$$\mu_{j+1}(r) = N_1 |A_{N_1}| r^{N_1-1} \leq \frac{N_1}{r} |A_N| r^N = \frac{\nu_{j+1}(r)}{r} \mu_j(r),$$

$$\mu_j(r) = |A_N| r^N = \frac{r}{N} N |A_N| r^{N-1} \leq \frac{r}{\nu_j(r)} \mu_{j+1}(r).$$

Lemma 3. With reference to an entire function defined as in (1), let an ordinary value of |z| = r, of index α , $0 < \alpha < 1$, be defined according to VALIRON ([6], p. 96). Then, for an ordinary value of r common to f(z) and zf'(z),

$$r_0(r) \le r_1(r) < r_0\{1 + O(r_0^{-\alpha})\}$$
 where $r_0(r) = r(r), r \to \infty$.

This lemma is given by Valiron ([6], p. 104, relation (s)).

Theorem 1. For an entire function f(z) defined as in (1),

(3)
$$\lim_{r \to \infty} \frac{\sup_{i \text{ inf}} \frac{\log \left| r \left[\frac{\mu_j(r)}{\mu(r)} \right]^{1/j} \right|}{\log r} = \frac{\varrho}{\lambda} \quad (j = 1, 2, 3, \ldots).$$

(Here and elsewhere $[\cdots]^{1j}$ is the positive j-th root of $[\cdots]$.)

PROOF. We first prove the case j=1 of (3). Putting j=0 in (2), then taking logarithms of all three members of (2), finally, dividing all three members by $\log r$ and letting $r \to \infty$, we get

$$\limsup_{r\to\infty} \frac{\log v_0(r)}{\log r} \leq \limsup_{r\to\infty} \frac{-\log \left|r \frac{\mu_1(r)}{\mu_0(r)}\right|}{\log r} \leq \limsup_{r\to\infty} \frac{\log v_1(r)}{\log r},$$

along with a similar inequality in which 'lim inf' replaces 'lim sup'. The case j = 1 of (3) then follows immediately from Lemma 1 (ii).

In the case $j \ge 2$, we observe that (2) can be written:

(4)
$$v_0(r) \leq r \frac{\mu_1(r)}{\mu_0(r)} \leq v_1(r) \leq \cdots \leq v_{j-1}(r) \leq r \frac{\mu_j(r)}{\mu_{j-1}(r)} \leq v_j(r).$$

Multiplying together the ratios involving the μ 's, we obtain

(5)
$$v_0(r) \leq r \left[\frac{\mu_j(r)}{\mu_0(r)} \right]^{1/j} \leq v_j(r).$$

Treating (5) exactly as we have already treated its case j = 1, we complete the proof of the case $j \ge 2$.

(2) shows that, given any small $\varepsilon > 0$, we can find $r_0(\varepsilon)$ such that

$$r^{(\lambda-1)j+\varepsilon} < \frac{\mu_j(r)}{\mu(r)} < r^{(\varrho-1)j+\varepsilon} \quad \text{for} \quad r > r_0.$$

Hence the following result of S. K. SINGH ([3], Theorems 1, 2) is a consequence of Theorem 1.

Corollary 1a. (i) For an entire function of order $\varrho < 1$ and p such that $p < (1-\varrho)j$ where j is a positive integer,

$$\frac{r^p \mu_j(r)}{\mu(r)} \to 0 \quad as \quad r \to \infty.$$

(ii) For an entire function of lower order $\lambda > 1$ and p such that $p < (\lambda - 1)j$ where j is a positive integer,

$$r^{-p}\frac{\mu_j(r)}{\mu(r)}\to\infty$$
 as $r\to\infty$.

The case j=1 of Theorem 1 is true with the pair $\mu(r)$ and $\mu_1(r)$ replaced by $\mu_1(r)$ and $\mu_2(r)$ or the pair $\mu_2(r)$ and $\mu_3(r)$, etc. Hence the following is a type of result included in Theorem 1 and its basic inequality (4).

Corollary 1b. (i) $\lambda \ge 1$ is a necessary condition for

(6)
$$\mu(r) < \mu_1(r) < \cdots < \mu_j(r), r > r_0.$$

(ii) Either $\lambda > 1$ or $\liminf_{r \to \infty} \frac{r(r)}{r} > 1$ (and $\lambda = 1$) is sufficient for (6).

Theorem 2. For an entire function f(z) defined as in (1),

(7)
$$r \left[\frac{\mu_j(r)}{\mu(r)} \right]^{1/j} > \frac{\log \mu(r)}{\log r} \quad \text{for} \quad r > r_0 \qquad (j = 1, 2, 3, \ldots).$$

PROOF. From (2) with j = 0 and (5),

(8)
$$r \left| \frac{\mu_j(r)}{\mu(r)} \right|^{1/j} \geq \nu(r) \qquad (j = 1, 2, 3, \ldots).$$

Also,

(9)
$$\log u(r) = \log |a_v| + r \log r, \qquad v = v(r),$$

where $\limsup |a_v|^{\frac{1}{v}} = 0$ as r or $v \to \infty$ and consequently $|a_v| < 1$ for $r > r_0$. Hence (9) gives

(10)
$$\frac{\log \mu(r)}{\log r} < \nu(r) \quad \text{for} \quad r > r_0.$$

(10) in conjunction with (8) establishes the required result (7).

For functions of finite non-zero order, the lower estimate for v(r) in (10), and hence also Theorem 2, can be improved by using the first half of (11) of the next theorem.

Theorem 3. For an entire function of order ϱ , $0 < \varrho < \infty$, defined as in (1),

(11)
$$\limsup_{r\to\infty} \frac{\log \mu(r)}{\nu(r)\log r} \leq 1 - \frac{\lambda}{\varrho}, \quad \liminf_{r\to\infty} \frac{\log \mu(r)}{\nu(r)\log r} = 0.$$

Both the results in (11) are known. The first result in (11) is obtained ([5] section I, Theorem 1) by using, in (9), the known formula ([6], p. 40, Theorem 14):

$$\liminf_{n\to\infty}\frac{\log|a_n|^{-1}}{n\log n}=\frac{1}{\varrho},$$

instead of the inequality $|a_v| < 1$ for $v > v_0$, in conjunction with the definition of λ in Lemma 1 (ii). The second result in (11) is known in a more general form with $\log r$ replaced by any function of r which tends to infinity with r ([4], Theorem 1 (2)).

The first result in (11) is best-possible in view of the example of f(z) given by S. K. Singh ([3], proof of Theorem 4 (i)), where $\varrho = 1$, $\lambda = 0$ and

$$\limsup_{r\to\infty}\frac{\log\mu(r)}{\nu(r)\log r}=1.$$

In a study of formal similarities in behaviour of $\mu(r)$ and M(r), the theorem which follows may be compared with a theorem for M(r) given by VALIRON ([6], p. 103).

Theorem 4. Let f(z) be an entire function defined as in (1). Let $|z| = r \rightarrow \infty$ through ordinary values of index α which are common to f(z)

if

and zf'(z) understood in the sense of Lemma 3. Then

$$r\mu_1(r) \sim v(r)\mu(r)$$
.

The theorem follows at once from (2) with j = 0 and Lemma 3.

- **3. Remarks.** (i) R. P. SRIVASTAV states Theorem 2 with the superfluous hypothesis $\lambda > 1$ ([5], p. 32, result (i)).
- (ii) R. P. Srivastav also states Theorem 2 for $j \ge 2$ without proof ([5], p. 32, result (iv)). But there is no clue to the proof either in his paper or in any of the references which he gives.
- (iii) S. K. Singh observes ([3], Corollary (ii) of Theorem 1) that, if f(z) is a function of finite order, taking note of the fact $\log \mu(r) \sim \log M(r)$ as $r \to \infty$, we can replace $\mu_j(r)$ by $M_j(r)$ (j = 0, 1) in the case j = 1 of Theorem 1 and obtain S. M. Shah's M(r)-analogue already referred to ([2], Theorems A, B). This observation assumes without justification that

$$\limsup_{r \to \infty} (\text{or inf}) \{ f(r) - g(r) \} = \limsup_{r \to \infty} (\text{or inf}) \{ F(r) - G(r) \}$$
$$0 < f(r) \sim G(r), \ 0 < g(r) \sim G(r).$$

(iv) Exact M(r)-analogues of all these results are known with two exceptions: (1) the M(r)-analogue of Corollary 1 b (ii) which involves a condition on r(r), (2) the case $j \ge 2$ of Theorem 2.

My thanks are due to Prof. C. T. RAJAGOPAL for his help and guidance in preparing this paper.

References

- [1] Q. I. Rahman, On a theorem of Shah, Publ. Math. Debrecen 5 (1957-58), 40-43.
- [2] S. M. Shah, A note on the derivatives of integral functions, Bull. Amer. Math. Soc. 53 (1947), 1156—1163.
- [3] S. K. Singh, On the maximum term and the rank of an entire function, Acta Math. 94 (1955), 1—11.
- [4] S. K. Singh, The maximum term of an entire function, Publ. Math. Debrecen 3 (1953-54), 1-8.
- [5] R. P. Srivastav, On the derivatives of integral functions, Ganita 7 (1956), 29-44.
- [6] G. Valiron, Lectures on the general theory of integral functions, New York, 1949.
- [7] T. VIJAYARAGHAVAN, On derivatives of integral functions, J. Lond. Math. Soc. 10 (1935), 116—117.
- [8] J. M. Whittaker, The lower order of integral functions, J. Lond. Math. Soc. 8 (1933), 20-27.

(Received February 6, 1961.)