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On the monotone convergence of certain Riemann sums

By G. SZEGO (Stanford) and P. TURAN (Budapest)

1. Let us consider a real valued function f(x), defined in a finite inter-
val which might be assumed to be [0, 1]. We subdivide it by the points

(1.1) O=x<)x1<X2< +++ <X (< Xps1 =1)
and form the sums

(1.2) S = 2 (e —x)f,),
(1.3) SN = 2 (ea—x)f(xv),

which may be called left resp. right Riemann sums. We shall consider sequ-
ences of subdivisions, the nth consisting of n points in (0, 1) such that the
maximal length of the intervals (x,, x,.;) tends to O; then, as n— oc, both
sums tend to the integral S(f) of f(x) in [0, 1] provided that S(f) exists in
RIEMANN’s sense. Our aim is to find classes of functions f(x) and “interlacing”
subdivisions (see (3. 3)) so that the sequences S\"(f) or S.”'(f) converge mono-
tonically for n—1,2,...,... to S(f) for the whole class.

It is reasonable to assume that f(x) itself is monotonic. If it is incre-
asing, we have S\”(f)= S(f) for every n so that in the case of monotone
convergence the sums S!’(f) are increasing; similarly, the sums S!"’(f) must
be decreasing. (The behavior is opposite if f(x) is decreasing.) It is easy to
see that monotone behavior of f(x) alone does not imply such a regularity,
by any choice of the points of subdivisions. Indeed let

(1.4) D<xi<xi<xi<l

and

(1.5)  ful0)=0, fulx)=p, fo(x)=gq, flx)=r, fu(1)=1
with

(1.6) O<p<g<r<l.
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Then we have
S (f) = (1—x1)g, S"(fo) = (xs—xi)p+(1—xi)r,

but at any choice of the points in (1.4) we can determine p,q,r so that
(1.6) is fulfilled and still S”(f£)>SY"(f). A similar remark holds for the
right Riemann sums.’)

We shall find that assuming, in addition, convexity of f(x), the situation
changes and for several ,classical” systems of subdivisions the convergence
will be monotone from the beginning for the whole class. (Convexity as well
as monotone behavior is throughout meant in the wider sense.) More exactly
our results will refer to the following four general classes of functions:

( I. f(x) is in [0, 1] decreasing and convex from below

. e 5 a5 i -5 JOCTEASIOR 5 n ,, above
(1.7) JI k W w . below
VNG s an e CURCIEBEINE -, i ,, above.

2. The question of monotone convergence is not an unnatural question
in the theory of Riemann integral. If the points of subdivision are chosen so
that the points of the kth subdivison belong always to the (k- 1)th one, the
Darboux sums converge monotonically to S(f) whenever f(x) is R-integrable.
This fact and also some investigations concerning the Gibbs phenomenon
led L. FEJER to raise the question of the monotone convergence of the Rie-
mann sums (1.2) and (1.3). Though he has obtained the necessary and
sufficient conditions for the points of subdivisions (see Theorem [ below)
and also observed that the classes (1.7) are the “proper” classes for mono-
tone convergence, he applied these results exclusively to the equidistant case.
In this case he made the further remark that a similar behavior holds for
any polynomial g(x) (instead of (1.7)), if we are contented with the mono-
tone character of the Riemann sums for n>n.(g); for a properly chosen
entire function g(x) no such n, exists. He did not publish his results; they
are announced together with some results of a paper of P. TURAN®) without
proofs. The novelty of our results, compared to those of FEJER, lies in veri-
fying one of his sufficient conditions for the monotone convergence in certain
special cases important in the theory of mechanical quadrature.

The case when the interval is no more finite, can be treated after pro-
per modifications; we shall not do it in this paper. The general question in

1‘) A similar remark was made by Prof. G. Povva.
2) P. Turix, On the zeros of the polynomials of Legendre, Casopis pro péstovani
mat. a fys. 75 (1950), 113—122. In particular see p. 122.
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which way the Riemann sums converge to the integral, has contacts with
seemingly far-lying questions; this can be illustrated by a problem of HARDY
and RAMANUJAN which refers to the distribution of signs of the coefficients
a, in the expansion

v } e {" & "

-(s)— o Tae ',ﬂa..-(,s 1)

where -(s) stands for the Riemann zeta-function. The link between this and
FEJER’s problems is the representation

_ (=D VNlogrk  log™t N
BETIE i W el
proved by W. E. BriGGS and S. CHOWLA.")

3. As indicated we shall investigate interlacing point-systems; denoting by

(3.1) 0<x1< X< e <X <1
and
(3.2) 0<M<ya< s <Pun <l

the nth resp. (n+ 1)th subdivision-points in (0, 1) we have (see (1.1))

xv < yv-—l < x\--,—l 3

(.3) r=0,1,...,n

With the abbreviations

JV'\‘-I_'_'_-Y\- "pv; xvil—yl'-l:{]‘.,

3.4
o T | P [Ny R

and
(3.5) D1 =0,
further

()= 2 e — ),

SN = X a—2)(3)

and analogously for S”(f), S\ (f), we assert
Theorem 1 (FEJER). In order that either of the inequalities

(3. 6) SHN=8"(), SAN=8 )

3) W. E. Briaas and S. Cuowera, The power series coefficients of £(s), Amer. Math.
Monthly, 62 (1955), 323—325.
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should hold for a fixed n for the whole class I it is necessary and sufficient
that for u==0,1, ..., n the conditions

"
(3 T) ;IQv(pV*l_pn) = 0
take place (note (3.5)).
We remark that (3. 7) is certainly satisfied if

(3.8) Po=PL= e = Pus

A slightly more general condition is the following. The sequence |{p,} is first
decreasing, then increasing and

(3.9) .?., q.(pv1—p,)=0.

4. For the necessity of (3.7) it is enough to show that the validity of
the first (or second) inequality of (3.6) for the special functions

A—x for O=x=14
1) fax)y= 0 for i=x=1

for all 0=/4=1 implies (3.7) and conversely. Since we may obviously
suppose f(1) =0 and all functions f(x) of class | with f(1)=0 can be
approximated uniformly by a suitable linear combination of the functions f;(x)
with positive coefficients, the sufficiency of (3.7) will follow at once.
In order to show that for all 0 =7 =1 the inequality
SN =S(f)

is equivalent to (3.7), we fix Z and define « by

(4.2) o i 58 B (=0, 1,:s:0)

and & by

(4.3) A=xti=pt+qp+nt+q+t - +P1+q+E if uz=l,
A==k if u=0

IA

where
(4.4) 0=5=q,+p,..

Then a simple geometrical reasoning (with the aid of the triangular and
trapezoidal areas above the curve (4. 1)) shows for u—0

(4.5) S(f) = ixy = A(po+ o)
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iz ] &l E-
Sf.“(f;.):?‘i‘?él(p.‘f—q i “f"Pp'f*qu PIE
(4. 6) gy w1 e 1 55 - s
=== P+ p‘.qﬁr‘pj\ g+ (P +q,)=.

u\

=1}

¢3
Further we assume first 0=§=p,; we have u—0

(4' 7) S}r+l(f,‘)_—_’:-}'] :f...pﬂ
and for 1=u—=n

a2 I 4 ] u-1 .
Sh(f)=% +5 B+ -2_2(;;,% )+

Bk Zp.

y=I0

4.8) + &0t 8= @, -2

u l

+2P0v 1+ Zﬂq.+p..

Secondedly we assume p, =E&=p,-¢q,; in the case u=0

(4.9) SEA(f) = Apo-+ (h—po)(go+ p1),
and in the case l1=u=n

2l

(1) Ly 1 | 1
S l(f).) By 2 .p + 2

M-

(p‘ I - ‘) +

1 4.

(4.10) -I—(q# “i'ppq—é‘i—_—g‘f) ('i-:-—p"): A# “)

|u

_u l

+2p Gt 2 3+ @ut PutPur)E—Pu(gF Pus)-
This yields for © =0, 0=4=p, (cf. (4.5), (4.7))
(4.11) Sh(f) =8 (f) — —Ag,
and for H= 0, Pu;i. éptl'i"q“ (Cf. (4. 5), (4. 9))

(4.12)  S(£) =S8 (£) = —pogo+piE—po) = qu(pr— o) 4 p1 E—po—q0).
Now let 1=u=n, 0=&=p,; from (4.6) and (4.8)

(4.13) S?,’E,(f,,)—sf.”(f;_): ‘ 4 (P —p)— .8,
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and finally for 1=u=n, p,=5=p,+q,, from (4.6) and (4.10)

(4.14) S (f)—SV(f) = ;‘qv(pr‘u —pP) + Pust E—p,—q,)-

From (4. 14) and (4. 12) the necessity of (3.7) follows at once; owing
to (4.11), (4.12), (4. 13) and (4. 14) the monotone convergence for the special
functions in (4.1) follows conversely and as remarked at the beginning of
4., also the sufficiency of (3.7).

Since the proof of the second assertion in (3.6) goes along the same
lines, we omit the details.

5. Since f(x) € Il implies that —f(x) belongs to the class | we obtain

the
Corollary 1. The inequalities (3. 7) represent the necessary and suffi-

cient condition that either of the inequalities

ShN =8N, SN =8"()
should hold for a fixed n for the whole class Il
Since f(x) ¢ I implies that v(x)==f(1—x) belongs to the class I, we

find with
x:_ l_xr-—"+]) ":0,]!"'!n+l'

O=X)<XI< +s <A< X1 =1
Yo=1—Jus2-y, y=0,1,...,0+2
O= <Y< - <Pus1 <Pria=1,
that the interlacing condition (3. 3) holds. Further we have for w = 0,1,...,n

* *
- Py— J";* 1— Xp = Xty — Yist-p = Gu-p
and similarly

; Q= Pn-n-
Now the inequality

]
'}_—r g (pra—pY) =0
amounts to

(5.1) > 2.(v1—q,) =0.
v=p
Hence we can conclude

Corollary II. The inequalities (5. 1) yield the necessary and sufficient
condition that either of the inequalities

ShH=S", SAN=S()

should hold for a fixed n for the whole class lll.
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Since f(x) € IV implies that — f(x) € lll, we can formulate

Corollary III. The inequalities (5. 1) give the necessary and sufficient
condition that either of the inequalities

Sh=Sf), SAN=SV)
should hold for a fixed n for the whole class IV.
We remark again that
(5.2) ==+ =¢.1(=0)
is sufficient to (5. 1).

6. It follows at once from (3. 8) that in the equidistant case, as FEgJER
remarked,

P et
7 5 s
(6.1) p==0 15 B4,
B o SRR PSR, 53 o, A
=02 a1 @+ D@m+2)’
i. e. (3.8) is fulfilled for n =1,2,... . Hence we proved

Corollary IV. (FEJER). The sequence of the left right Riemann sums
based on the equidistant system (6.1) tends monotonically decreasingly/in-
creasingly resp. increasingly ‘decreasingly to S(f) whenever f belongs to class
I resp. Il

7. In the theory of mechanical quadrature an important role is played
by the zeros of the ultraspherical polynomials’) P! (x) where 0<«<1. This
motivates the classical investigations of CHEBYSHEvV, HEINE, A. MARKOV,
BRUNS, STIELTJES, FEJER and others concerning the finer distribution of these
zeros; a brief account of this theory can be found in OP, chapter 6. It is
well-known that the zeros of P!”(x) are in (—1, +1) and interlace with
those of P.¥i(x); in what follows we shall prove the more informative

Theorem I1. Denoting the zeros of P\”(x) for fixed 0< <1 in de-

creasing order by x,’, the chain of inequalities

(7.1 AV BV < vei & x[iill] ——x['.'. 1]

holds (n=2,3,...).
) We shall follow the notation of G. Szeao, ,,Orthogonal polynomials’™ revised edi-
tion, 1959, p. 81; this book will be quoted in the sequel by OP.
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We note that if n is even, the last difference in (7. 1) is

+1  ;
x(: )_ x(.:' '

Ty 9

x‘j"" and x‘_’ being the smallest positive zeros of P\i(x) resp. P”(x); if

n is odd, the last difference in (7.1) is
(n+1) (1) (n+1)
xu++1 xru o x"+1

the smallest posntve zero of Ph(x).
Since —1<x{""<1, there is a unique %" so that

x™ — cos 9",

(7.2)
O‘-:: !9v<
We have evidently
(7.3) 0<H"™ < I <IN < IR < Iy =75

We assert the following stronger

Theorem IlI. At a fixed 0« <1 for the above %\ ’s the chain of
inequalities
HI— I — g < — Iy

holds (n=2,3,:..).

Since the proof of this theorem is essentially the same as that of
Theorem II, we shall confine ourselves to the proof of Theorem II.

8. For the proof of this theorem we employ STURM’s method (cf. OP,
p. 19). The function

e 1
u=(1—x9)2 1P (x)
satisfies the differential equation (OP, p. 82, (4.7.10))

d“u
8.1) g T @u=0
where

¥ b5 SBF

s el TTETETY
2ol & A e (1—%

In order to show

1) (1) - {:rll (1)
X\ l _Y\ | X‘- = h,

R B,
2srs|—-

(8.2)
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we consider the two equations:

dr ,
e ot pra()r—0 — P )

in the interval [x\""", x\“;"]. Visibly ¢.(x) is increasing with n and x as long
as 0=x=1 so that
Pu(X—h) < @1 (X);

x—h=x""_p=x"=0,

indeed

Hence » is “stronger oscillating” than u. Now u vanishes at x!"™"’

(since
""" —h—=x"") and again at x\"} +h, since » vanishes at x!"*", its next
zero, that is x',"{", must be <x\"}--A, which is the assertion.

We conclude from (8.2) that

n+2 ‘ ' i
X —xA < —x",
8.3
( ) 2-:- rl - n‘-l-l

Also we observe that the positive zeros of the ultraspherical polynomials
PS5 (x) and PSs(x) interlace; similarly the positive zeros of PSi.(x) and

P2, (x). (Ci. OP, p. 59, formulas (4.1.5).)

9. Now the n positive zeros of

(9.1) Pk (x) =0
for fixed O<e<1 and n-=1,2,... resp. the n greatest positive zeros of
9.2) P5s(x) =0

for fixed O<e<1 and n=-1,2,... form the points of subdivision to which
our monotone convergence theorems refer. With the notation of Theorem II.
and in addition with the convention
(9.3) SN TR Rl |
we assert
Theorem 1V. The Riemann sums
Y‘(x{' 1‘ “"—Yt i\ull')f(x'- +1)

v=A{

and

52 sitealt._ptiusis ot

v=ll
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based on the points (9.1)—(9.3) tend for n=1,2,... in a monotonically
decreasing resp. increasing way to S(f) whenever f belongs to class 1.

The proof follows at once from (3.8) and (8. 3). We assert further with
the convention
(9. 4) BHi=1, 25P=0,
the following

Theorem V. The Riemann sums

\ ( l “+” {l-h*\:’ll)f(xta-"r:i’
V= H

and

\" (x[_r 1+2) _x:i"ri‘r{-;_’l))f( l‘u~ ’I

based on the points (9. 2)—(9. 4) tend for n=1,2,... in a monotonically
decreasing resp. increasing way to S(f) whenever f belongs to class I.

The proof follows at once from (3.8) and (8. 3) except for the inequality
pr< po. But in our case we have indeed

1= xS — x5 < — ol < xS = o,

10. Finally we have to motivate why in the case of the points (9. 2)
of subdivision the points x\7y" have been omitted. Indeed, in the contrary
case the condition p, = p, would assume the form

= 2n+2 25
(10.1) XBH)_ xCid) o (@)

Using the first term of the asymptotic expansion of OP, p. 195, (8. 21.15),
we find that for even n and n— ~ the smallest positive zeros

2n)
‘: :f,] = COS '(}}ljfa

»==0,1,2,... but fixed, can be approximated as follows
" +l)'7
B o Gl b e 1)
e 2n+a nl

Hence (10.1) would imply for large n

3 i i Ak
A, WS
2nddte 2424 2n+4+e ' \n

which is not the case.

(Received April 26, 1961.)



