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Lt-Horn sentences and reduced products

By MILOŠ S. KURILIĆ (Novi Sad) and MILAN Z. GRULOVIĆ (Novi Sad)

Abstract. It is proved that under continuum hypothesis an Lt-sentence is pre-
served under reduced products of topological structures iff it is equivalent in basic
structures to an L2-Horn sentence. Specially, each Lt-Horn sentence is preserved under
such products.

1. Introduction

The aim of the paper is to prove the topological version of the classical
theorem of H. J. Keisler concerning Horn sentences and reduced products
(see [2], Theorem 6.2.5 or [6]).

The language Lt, introduced by T. A. McKee in [7] and [8] and
M. Ziegler in [9] is a sublanguage of the monadic second-order language
L2 which (using weak structures as models) can be regarded as a two-
sorted first-order language.

For the coherence of the text firstly we introduce the notation and
recall a few well known facts.

We consider the two-sorted language L2 = L∪CONST ∪{∈}, where L
is a first-order language (with the sets of relations, functions and constants,
respectively, Rel, Fnc and Const). CONST is the set of “set constants”
([4]) and ∈ is a “new” binary relation (not contained in Rel). Var1 =
{v1, v2, . . . } and Var2 = {V1, V2, . . . } are the sets of individual and set
variables. As usual we use meta variables x, y, z, . . . and X,Y, Z, . . . . For
the sake of convinience, the sets of terms (TermL2) and formulas (FormL2)
are defined as follows. The terms of L2 are exactly the terms of L, i.e.
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TermL2 = TermL. The set of atomic L2-formulas, AtL2 , contains atomic
L-formulas and formulas of the shape t ∈ X and t ∈ C, where t ∈ TermL,
X ∈ Var2 and C ∈ CONST. The set of L2-formulas is obtained from
atomic L2-formulas by a finite application of connectives ∧, ∨ and ¬ and
quantifiers ∃x and ∃X (=⇒, ⇐⇒, ∀x and ∀X are defined in the standard
way). The “unofficial” formulas X = Y , X = C are to replace the formulas
∀x(x ∈ X ⇐⇒ x ∈ Y ), ∀x(x ∈ X ⇐⇒ x ∈ C). By Fv(ϕ) we denote the
set of free variables of the formula ϕ ∈ FormL2 . SentL2 is the set of
L2-sentences.

A model of L2 is a quadruple A = 〈A,O,C, %〉, where A is a model
of (the first-order language) L with domain A, C ⊆ O and % ⊆ A × O
is the interpretation of the relation ∈. We say that a model A is weak if
∅ 6= O ⊆ P (A) and % is the membership relation (we will write again ∈).
Of course, there is no restriction at all if we consider just weak models
(any model is isomorphic to some such model). Thus, from now on, a
model will mean a weak model and we will simply write A = 〈A,O,C〉.
A valuation in A is an union τ = τ1 ∪ τ2, where τ1 : Var1 −→ A and
τ2 : Var2 −→ O. The value of a term and the satisfaction relation (for
the given valuation) are defined naturally; the individual variable vi is
interpreted as (an element of A) τ1(vi), the set variable Vj as (an element
of O) τ2(Vj) (and, we repeat, ∈ is the set-theoretic membership relation).

Weak L2-structuresA and B are L2-elementary equivalent, in notation
A ≡L2 B, iff:

A ² ϕ iff B ² ϕ, for all ϕ ∈ SentL2 .

Let {Ai | i ∈ I} be a family of weak L2-models, Ψ a filter on I, ∼ the
equivalence relation on

∏
i∈I Ai given by: f ∼ g iff {i ∈ I | fi = gi} ∈ Ψ,

[f ] the equivalence class of the element f ∈ ∏
i∈I Ai and q :

∏
i Ai −→∏

i Ai/∼ the natural mapping. By
∏

Ψ Ai we denote the reduced product
of first-order parts of Ai, i ∈ I, by

∏Oi the family of sets of shape∏
i∈I Ui, where, for each i ∈ I, Ui ∈ Oi and by

∏
ΨOi the collection

of sets q(
∏

i∈I Ui), where
∏

i∈I Ui ∈
∏Oi. For C ∈ CONST we define

CA = q(
∏

i∈I CAi). Then

A =

〈∏

Ψ

Ai,
∏

Ψ

Oi,
{
CA | C ∈ CONST

}
〉

is a weak L2-structure called the reduced product of the family {Ai | i ∈ I},
in notation

∏
ΨAi.

It is easy to imitate the proofs of some of the most important theorems
of the classical model theory. More precisely, the logic L2 satisfies, for
instance, the ÃLoś theorem, the compactness theorem and the Löwenheim-
Skolem theorem.
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Theorem 1.1 (ÃLoś). Let {Ai | i ∈ I} be a family of weak L2-struc-
tures and Ψ an ultrafilter on I. Then for each ϕ(x1, . . . , xp, X1, . . . , Xq)
∈ FormL2 , each f1, . . . , fp ∈ ∏

Ai and each U1, . . . , Uq ∈ ∏Oi it holds:
∏

Ψ
Ai ² ϕ[[f1], . . . , [fp], q(U1), . . . , q(Uq)]

iff
{i ∈ I | Ai ² ϕ[f1

i , . . . , fp
i , U1

i , . . . , Uq
i ]} ∈ Ψ.

Specially, if Ai = A for all i ∈ I, then A ≡L2

∏
ΨA.

Theorem 1.2 (Compactness). A theory T ⊆ SentL2 has a weak model
iff each its finite subset has a weak model.

Theorem 1.3 (Löwenheim-Skolem). Let κ be an infinite cardinal and
B = 〈B,OB,CB〉 a weak L2-model. If |L2| ≤ κ ≤ |B ∪ OB|, X ⊆ B,
U ⊆ OB and |X∪U| ≤ κ, then there exists a weak model A = 〈A,OA,CA〉
satisfying X ⊆ A, U ⊆ OA, A ≡L2 B and |A ∪ OA| ≤ κ.

In particular, if a theory T of a countable language L2 has a weak
model, then it has a countable weak model.

A weak L2-model A realizes a set of L2-formulas Σ(x1, . . . , xp, X1,
. . . , Xq) iff there exist a1, . . . , ap ∈ A and U1, . . . , Uq ∈ OA such that

A ² ϕ[a1, . . . , ap, U1, . . . , Uq] for each ϕ ∈ Σ(x1, . . . , xp, X1, . . . , Xq).

Σ(x1, . . . , xp, X1, . . . , Xq) is a type over A iff there exists a weak L2-model
M satifying: (1) M ² Th(A) and (2) M realizes Σ(x1, . . . , xp, X1, . . . ,
Xq).

A weak L2-model A is saturated iff for each X ⊆ A and U ⊆ O
satisfying |X ∪ U| < |A ∪O|, every type Σ(x1, . . . , xp, X1, . . . , Xq) of the
language LX∪U = L2 ∪ {ca | a ∈ X} ∪ {CV | V ∈ U} over AX∪U =
〈A, a, V 〉a∈X, V ∈U is realized in AX∪U .

By the compactness theorem it holds the statement analogous to The-
orem 6.1.1 from [2].

Theorem 1.4 (CH). Let {Ai | i ∈ ω} be a family of weak models of
a countable language L2 such that, for all i ∈ ω, |Ai ∪ OAi | ≤ ω1 and let
Ψ be a nonprincipal ultrafilter on ω. Then the ultraproduct

∏
ΨAi is a

saturated weak L2-model of cardinality ≤ ω1.

The theorems from this paragraph can also be obtained by “transla-
tion” of L2 in the corresponding (one-sorted) first-order language, but this
way is more expensive.
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2. Prenex forms of formulas

In the sequel the sequences like x1, . . . , xp; X1, . . . , Xq; f1, . . . , fp;
f1

i , . . . , fp
i , [f1], . . . , [fp]; U1, . . . , Uq; U1

i , . . . , Uq
i ; q(U1), . . . , q(Uq) will

be shortly denoted by x, X, f , fi, [f ], U , Ui, q(U), whenever the confusion
is impossible.

For all definitions and facts in connection with Lt-formulas and Lt-
language we refer to the book of M. Ziegler and J. Flum ([3]).

Definition 2.1. A weak L2-structure A = 〈A,O,C〉 is a covering (ba-
sic, topological) structure iff

⋃O = A (O is a base for some topology on A,
O is a topology on A).

For an L2-formula ϕ(x1, . . . , xp, X1, . . . , Xq), shortly denoted by
ϕ (x, X) we write: ²w ϕ(x, X) ( ²c ϕ(x, X), ²b ϕ(x, X), ²t ϕ(x, X)) iff for
each weak (covering, basic, topological) L2-structure A, each a1, . . . , ap ∈
A and each U1, . . . , Uq ∈ O it holds: A ² ϕ[a, U ].

If ϕ,ψ ∈ FormL2 , then ϕ
w⇐⇒ ψ (ϕ c⇐⇒ ψ, ϕ

b⇐⇒ ψ, ϕ
t⇐⇒ ψ) iff

²w ϕ ⇐⇒ ψ (²c ϕ ⇐⇒ ψ, ²b ϕ ⇐⇒ ψ, ²t ϕ ⇐⇒ ψ).

Clearly, for an L2-structure A we have: A is topological −→ A is
basic −→ A is covering −→ A is weak. Thus, for ϕ,ψ ∈ FormL2 it holds:
ϕ

w⇐⇒ ψ −→ ϕ
c⇐⇒ ψ −→ ϕ

b⇐⇒ ψ −→ ϕ
t⇐⇒ ψ.

Definition 2.2. An L2-formula ϕ is in L2-prenex form iff ϕ ≡ Q1 . . .
Qnψ, where Qi, i = 1, . . . n, is one of the quantifiers ∃x, ∀x, ∃X, ∀X and
ψ is a quantifier free L2-formula.

An Lt-formula ϕ is in Lt-prenex form iff ϕ ≡ Q1 . . . Qnψ, where Qi,
i = 1, . . . , n, is one of the quantifiers ∃x, ∀x, ∃X 3 t, ∀X 3 t, t being a
term, and ψ is a quantifier free Lt-formula.

Lemma 2.3. (A) Let ϕ and ψ be L2-formulas and X /∈ Fv(ϕ). Then
it holds:

(1) ¬∃Xψ
w⇐⇒ ∀X¬ψ;

(2) ¬∀Xψ
w⇐⇒ ∃X¬ψ;

(3) (ϕ =⇒ ∃Xψ) w⇐⇒ ∃X(ϕ =⇒ ψ);

(4) (∀Xψ =⇒ ϕ) w⇐⇒ ∃X(ψ =⇒ ϕ);

(5) (ϕ =⇒ ∀Xψ) w⇐⇒ ∀X(ϕ =⇒ ψ);

(6) (∃Xψ =⇒ ϕ) w⇐⇒ ∀X(ψ =⇒ ϕ).

(B) Let ϕ and ψ be L2-formulas and x /∈ Fv(ϕ). Then (1)–(6) holds
if we replace X by x.
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Lemma 2.4. Let ϕ(x1, . . . , xp, X1, . . . , Xq) and ψ(x1, . . . , xp, X1,

. . . , Xq, Y ) be L2-formulas and let t(x1, . . . , xp) ∈ TermL2 . Then it holds:

(1) ¬∃Y 3 t ψ
w⇐⇒ ∀Y 3 t¬ψ;

(2) ¬∀Y 3 t ψ
w⇐⇒ ∃Y 3 t¬ψ;

(3) (ϕ =⇒ ∃Y 3 t ψ) c⇐⇒ ∃Y 3 t (ϕ =⇒ ψ);

(4) (∀Y 3 t ψ =⇒ ϕ) c⇐⇒ ∃Y 3 t (ψ =⇒ ϕ);

(5) (ϕ =⇒ ∀Y 3 t ψ) w⇐⇒ ∀Y 3 t (ϕ =⇒ ψ);

(6) (∃Y 3 t ψ =⇒ ϕ) w⇐⇒ ∀Y 3 t (ψ =⇒ ϕ).

Moreover, if the formulas from the left side are Lt-formulas so are the

formulas on the right side.

Proof. (1) and (2) follow from the previous lemma.
(3) Let A be a covering structure, a1, . . . , ap∈A and U1, . . . , Uq ∈ O.

(=⇒) Let A ² (ϕ =⇒ ∃Y 3 t ψ)[a, U ], that is if A ² ϕ[a, U ], then there

is V ∈ O such that tA[a] ∈ V and A ² ψ[a, U, V ]. Suppose A 2 ∃Y 3
t (ϕ =⇒ ψ)[a, U ]. Then for each V ∈ O, if tA[a] ∈ V then A ² ϕ[a, U ]

and A 2 ψ[a, U, V ]. Since
⋃O = A there is V0 containing tA[a], hence

A ² ϕ[a, U ] and A 2 ψ[a, U, V0]. It follows that there exists some V1 ∈ O
such that tA[a] ∈ V1 and A ² ψ[a, U, V1], a contradiction.

(⇐=) Let A ² ∃Y 3 t (ϕ =⇒ ψ)[a, U ]. Thus there is V0 ∈ O such that

tA[a] ∈ V0 and A 2 ϕ[a, U ] or A ² [a, U, V0]. Suppose that A 2 (ϕ =⇒
∃Y 3 t ψ)[a, U ]. Then we have A ² ϕ[a, U ] and, for all V ∈ O, tA[a] ∈ V

implies A 2 ψ[a, U, V ]. But then A ² ψ[a, U, V0] and A 2 ψ[a, U, V0].

(4) follows from (3) and the proofs of (5) and (6) are direct as well.
¤

Remark. The item (3) of the preceeding theorem does not hold for
weak L2-structures. For example, formulas (x 6= x =⇒ ∃Y 3 x x = x) and
∃Y 3 x(x 6= x =⇒ x = x) are not weak equivalent .

Corollary 2.5. For each L2-formula ϕ there exists an L2-formula ψ

in L2-prenex form such that ϕ
w⇐⇒ ψ.

For each Lt-formula ϕ there exists an Lt-formula ψ in Lt-prenex form

such that ϕ
c⇐⇒ ψ.
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3. Horn sentences and reduced products

Definition 3.1 (Horn L2-formulas). An L2-formula ϕ is a basic Horn
L2-formula iff ϕ ≡ ϑ1 ∨ . . . ∨ ϑm, where at most one of the formulas ϑi is
an atomic L2-formula and the rest being negations of atomic L2-formulas.

Horn L2-formulas are the formulas obtained from basic Horn L2-
formulas by a finite number of applications of use of conjunction (∧) and
the quantifiers ∃x, ∀x, ∃X and ∀X.

The set of Horn L2-formulas and the set of Horn L2-sentences will be
denoted, respectively, by HFL2 and HSL2 .

(Horn Lt-formulas)
(1) Basic Horn L2-formulas are (basic) Horn Lt-formulas.
(2) If ϕ and ψ are Horn Lt-formulas, so are the formulas ϕ∧ψ, ∃xϕ,

∀xϕ.
If ϕ is a Horn Lt-formula, t ∈ TermL2 and ϕ is positive (negative) in

X, then the formula ∀X 3 t ϕ (∃X 3 t ϕ) is a Horn Lt-formula.
(3) An Lt-formula is a Horn Lt-formula iff it is obtained by finite use

of (1) and (2).
The set of Horn Lt-formulas and the set of Horn Lt-sentences will be

denoted, respectively, by HFLt and HSLt .

Lemma 3.2. (a) For each Horn L2-formula ϕ there exists a Horn

L2-formula ψ in L2-prenex form such that ϕ
w⇐⇒ ψ.

(b) For each Horn Lt-formula ϕ there exists a Horn Lt-formula ψ in Lt-

prenex form such that ϕ
c⇐⇒ ψ and Fv(ϕ) = Fv(ψ), Fv+(ϕ) = Fv+(ψ),

Fv−(ϕ) = Fv−(ψ), where Fv+(ϕ) (Fv−(ϕ)) is the set of free set variables
of the formula ϕ in which it is positive (negative).

Proof. (a) The induction follows the construction of ϕ as a Horn
L2-formula.

(1) If ϕ is a basic Horn L2-formula then ψ ≡ ϕ;
(2) If ϕ ≡ ϕ1 ∧ ϕ2, where ϕ1, ϕ2 ∈ HFL2 , then, by inductive hy-

pothesis, for some Horn L2-formulas ψ1, ψ2 in L2-prenex form it holds:
ϕi

w⇐⇒ ψi, i = 1, 2, whence ϕ
w⇐⇒ ψ1 ∧ ψ2. Let ψ1 ≡ Q1

1 . . . Q1
kη1

and ψ2 ≡ Q2
1 . . . Q2

l η2. Without loss of generality we can assume that
the bounded variables of ψ1 do not appear in ψ2 and vice-versa. Then
ϕ

w⇐⇒ Q1
1 . . . Q1

kQ2
1 . . . Q2

l (η1 ∧ η2).
(3) If ϕ ≡ ∃xϕ1 where ϕ1 ∈ HFL2 , then, for some Horn L2-formula

ψ in L2-prenex form ϕ1
w⇐⇒ ψ, thus ϕ

w⇐⇒ ∃xψ.
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The cases when ϕ is of the form ∀xϕ1, ∃Xϕ1 and ∀Xϕ1 are obvious
as well.

(b) Still one induction. Let us just consider the case: ϕ ≡ ∃X 3
tϕ1(. . . , X−, . . . ), where ϕ1 ∈ HFLt

. By assumption, there is a Horn Lt-
formula ψ(. . . , X−, . . . ) in Lt-prenex form such that ϕ1

c⇐⇒ ψ, whence
ϕ

c⇐⇒ ∃X 3 tψ. ¤
Lemma 3.3. For each ϕ ∈ HFLt

there exists ϑ ∈ HFL2 such that

ϕ
c⇐⇒ ϑ.

Proof. By the previous lemma we can consider just Horn Lt-formu-
las in Lt-prenex form. As usual, the proof is by induction on the number
of quantifiers, n, in formula ϕ.

If n = 0, ϕ is a conjunction of basic Horn Lt formulas.
Suppose that the statement holds for formulas with ≤ n quantifiers

and let ϕ ≡ Q1 . . . QnQn+1ϕ1. By inductive hypothesis there is ϑ1 ∈ HFL2

such that Q2 . . . QnQn+1ϕ1
c⇐⇒ ϑ1. We distinguish the following cases:

(a) Q1 is ∃X 3 t. Then ϕ
c⇐⇒ ∃X(t ∈ X ∧ϑ1) and ∃X(t ∈ X ∧ϑ1) ∈

HFL2 .
(b) Q1 is ∀X 3 t. According to 2.5, we can assume that ϑ1 is in

L2-prenex form, let ϑ1 ≡ Q′1 . . . Q′
kη. Then, by Lemma 2.3, we have:

ϕ ≡ ∀X 3 tQ2 . . . QnQn+1ϕ1
c⇐⇒ ∀X 3 tQ′

1 . . . Q′
kη

w⇐⇒ ∀X(t ∈ X =⇒
Q′1 . . . Q′

kη) w⇐⇒ ∀XQ′
1 . . . Q′

k(t ∈ X =⇒ η). Now η ≡ η1 ∧ . . . ∧ ηk, where
k ≥ 1 and ηi are basic Horn L2-formulas, so t ∈ X =⇒ η

w⇐⇒ ¬t ∈
X ∨ (η1 ∧ . . .∧ ηk) w⇐⇒ (¬t ∈ X ∨ η1)∧ . . .∧ (¬t ∈ X ∨ ηk)

def≡ ψ, but this

is a Horn L2-formula again. Finally, ϕ
c⇐⇒ ∀XQ′1 . . . Q′kψ

def≡ ϑ ∈ HFL2 .
The cases when Q1 is ∃x or ∀x are still more obvious. ¤
Definition 3.4. An L2-formula ϕ(x1, . . . , xp, X1, . . . , Xq) is preserved

under reduced products of weak structures iff for each family of weak L2-
structures {Ai | i ∈ I}, each filter Ψ on I, each f1, . . . , fp ∈ ∏

Ai and
each U1, . . . , Uq ∈ ∏Oi there holds:

if
{
i ∈ I | Ai ² ϕ

[
fi, Ui

]} ∈ Ψ then
∏

Ψ
Ai ² ϕ

[
[f ], q(U)

]
.

The set of such formulas will be denoted by RPFw
L2

and the corresponding
set of sentences by RPSw

L2
.

In a similar manner we define when an Lt-formula (ϕ(x1, . . . , xp,
X1, . . . , Xq)) is preserved under reduced product of basic structures, in
notation ϕ ∈ RPF b

Lt
, that is ϕ ∈ RPSb

Lt
if ϕ is a sentence. Of course, now

only the reduced products of families of basic structures are considered.

Now we prove an L2-version of Keisler’s Lemma 6.2.4. from [2].
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Lemma 3.5. Let α be an infinite cardinal, L2 the defined language,

{Ai | i ∈ I} a family of weak L2-models and B a saturated weak model of

the language L2 such that the following conditons are satisfied:

(1) 2α = α+;

(2) |L2| ≤ |I| = α;

(3) for each i ∈ I, |Ai ∪ Oi| ≤ α+;

(4) B is either a finite model or a model of cardinality α+;

(5) For any ϕ ∈ HSL2 it holds: if |{i ∈ I | Ai 2 ϕ}| < α (in other

words, if the Horn sentence ϕ is satisfied in almost all models of

the given family) then B ² ϕ.

Then there exists a filter Ψ on I such that B ∼= ∏
ΨAi.

Proof. We follow the proof given in [2] (using the same notation as
much as possible). Let A

def=
∏

i∈I Ai and O def=
∏Oi. Clearly, |A ∪ O| ≤

2α = α+. Firstly we are to define an onto mapping h : A∪O −→ B∪OB,
where h|A maps A onto B and h|O maps O onto OB, which satifies the
following:

(∗) for any ϕ(x1, . . . , xp, X1, . . . , Xq) ∈ HFL2 , for any a1, . . . , ap ∈ A

and any U1, . . . , Uq ∈ O it holds: if |{i ∈ I | Ai 2 ϕ[a1
i , . . . , ap

i , U1
i , . . . ,

Uq
i ]}| < α then B ² ϕ[h(a1), . . . , h(ap), h(U1), . . . , h(Uq)].

Let A = {aξ | ξ < α+}, O = {U ξ | ξ < α+}, B = {bξ | ξ < α+}
and OB = {V ξ | ξ < α+}. We are looking for the new enumerations of

these sets, respectively, {aξ | ξ < α+}, {Uξ | ξ < α+}, {bξ | ξ < α+} and

{V ξ | ξ < α+} such that there holds:

(∗∗) for any ν < α+ and any L2-Horn sentence ϕ of the expanded
L2-language obtained by adding to the initial language the set of new
constants (of both sorts) {cξ | ξ < ν} ∪ {Cξ | ξ < ν} (for this occasion
simply denoted by Lν

2):

if |{i ∈ I | 〈Ai, a
ξ
i , U

ξ
i 〉ξ<ν 2 ϕ}| < α then 〈B, bξ, V ξ〉ξ<ν ² ϕ.

Because of (5), for ν = 0 the condition (∗∗) is automaticaly satisfied.
Let us suppose that we have already defined aξ, U ξ, bξ and V ξ for all

ξ < ν. Further we distinguish the next cases.
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(I) ν = β + 2k, where β is either 0 or a limit ordinal.
We put aν = aβ+k, Uν = Uβ+k. Let

Σ(x, X) def= {ϕ(x,X) ∈ HFLν
2
|

∣∣{i ∈ I | 〈Ai, a
ξ
i , U

ξ
i 〉ξ<ν 2 ϕ[aν

i , Uν
i ]}

∣∣ < α}.

This set of formulas is a type over 〈B, bξ, V ξ〉ξ<ν . For let ϕ1, . . . , ϕn ∈
Σ(x,X) and

Ik = {i ∈ I | 〈Ai, a
ξ
i , U

ξ
i 〉ξ<ν 2 ϕk[aν

i , Uν
i ]}, k = 1, . . . , n.

Then |⋃n
k=1 Ik| < α and for i /∈ ⋃n

k=1 Ik it holds 〈Ai, a
ξ
i , U

ξ
i 〉ξ<ν ²

∧n
k=1 ϕk[aν

i , Uν
i ], that is 〈Ai, a

ξ
i , U

ξ
i 〉ξ<ν ² ∃x∃X ∧n

k=1 ϕk(x, X). By (∗∗)
(for ν), 〈B, bξ, V ξ〉ξ<ν ² ∃x∃X ∧n

k=1 ϕk(x,X). Now, since B is a satu-

rated model, 〈B, bξ, V ξ〉ξ<ν realizes the type Σ(x,X); let 〈B, bξ, V ξ〉ξ<ν ²
Σ[b, V ]. We define: bν = b, V ν = V and check that (∗∗) holds for

ν + 1. Let ϕ ∈ HSLν+1
2

, |{i ∈ I | 〈Ai, a
ξ
i , U

ξ
i 〉ξ≤ν 2 ϕ}| < α and

let ϕ(x,X) be the formula obtained from ϕ by replacing the constants
cν , Cν by the suitable variables, respectively, x,X (clearly, if these con-
stants do not appear in the sentence ϕ, the case is trivial). By the

assumption, |{i ∈ I | 〈Ai, a
ξ
i , U

ξ
i 〉ξ<ν 2 ϕ(x,X)[aν

i , Uν
i ]}| < α, whence

ϕ(x,X) ∈ Σ(x,X) and, furthermore, 〈B, bξ, V ξ〉ξ<ν ² ϕ(x,X)[bν , V ν ], i.e.

〈B, bξ, V ξ〉ξ≤ν ² ϕ.

(II) ν = β + 2k + 1, where, again, β is either 0 or a limit ordinal.
We put bν = bβ+k, V ν = V β+k. Let

Σ(x,X) def= {ϕ(x,X) ∈ HFLν
2
| 〈B, bξ, V ξ〉ξ<ν ² ¬ϕ[bν , V ν ]}.

For any ϕ(x,X) ∈ Σ(x, X) it holds: the set Iϕ
def= {i ∈ I | 〈Ai, a

ξ
i , U

ξ
i 〉ξ<ν

2 ∀x∀Xϕ(x,X)} is of cardinality α; otherwise, by (∗∗) it would follow

〈B, bξ, V ξ〉ξ<ν ² ∀x∀Xϕ(x, X), a contradiction. By the known result
from set theory, the sets Iϕ, ϕ(x,X) ∈ Σ(x, X), contain subsets Jϕ of
cardinality α which are mutually disjoint. Now, for all i ∈ I, we pick
aν

i , Uν
i in the following way: if i ∈ Jϕ we choose elements, aν

i , Uν
i , such
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that 〈Ai, a
ξ
i , U

ξ
i 〉ξ<ν ² ¬ϕ[aν

i , Uν
i ]; if i /∈ ⋃

ϕ∈Σ Jϕ, we choose elements

aν
i , Uν

i arbitrarily. So we obtain the “wanted” elements: aν = 〈aν
i | i ∈ I〉,

Uν =
∏

i∈I Uν
i .

Again the validity of the condition (∗∗) for ν + 1 must be checked.
For the sentence ϕ ∈ HSLν+1

2
let |{i ∈ I | 〈Ai, a

ξ
i , U

ξ
i 〉ξ≤ν 2 ϕ}| < α. Sup-

pose 〈B, bξ, V ξ〉ξ≤ν ² ¬ϕ. Then the formula ϕ(x,X) (obtained from the
sentence ϕ as above) is in Σ(x,X), hence, for all i ∈ Jϕ, 〈Ai, a

ξ
i , U

ξ
i 〉ξ<ν ²

¬ϕ[aν
i , Uν

i ], that is 〈Ai, a
ξ
i , U

ξ
i 〉ξ≤ν 2 ϕ, a contradiction (|Jϕ| = α).

By the very construction of the new enumeration we have: A = {aξ |
ξ < α+}, B = {bξ | ξ < α+}, O = {Uξ | ξ < α+} and OB = {V ξ | ξ <
α+}.

Finally we are able to define h: let, for all ξ < α+, h(aξ) = bξ and
h(U ξ) = V ξ. The mapping h is well-defined; for if, for instance, Uβ = Uγ

and β < γ < δ (< α+), then {i ∈ I | 〈Ai, a
ξ
i , U

ξ
i 〉ξ<δ ² ∀x(x ∈ Cβ ⇐⇒

x ∈ Cγ)} = I, thus, by (∗∗), 〈B, bξ, V ξ〉ξ<δ ² ∀x(x ∈ Cβ ⇐⇒ x ∈ Cγ)
(for it is a Horn sentence in question) and so h(Uβ) = V β = V γ = h(Uγ).

The condition (∗) also holds. For let ϕ(x1, . . . , xp, X1, . . . , Xq) ∈
HFL2 , aξ1 , . . . , aξp ∈ A and Uν1 , . . . , Uνq ∈ O and let us suppose that the
set I0

def= {i ∈ I | Ai 2 ϕ[aξ1
i , . . . , a

ξp

i , Uν1
i , . . . , U

νq

i ]} is of cardinality less
than α. Then, according to (∗∗), if ξ1, . . . , ξp, ν1, . . . , νq < δ (< α+),

〈B, bξ, V ξ〉ξ<δ ² ϕ(cξ1 , . . . , cξp , Cν1 , . . . , Cνq ),

that is
B ² ϕ[bξ1 , . . . , bξp , V ν1 , . . . , V νq ],

that is
B ² ϕ[h(aξ1), . . . , h(aξp), h(Uν1), . . . , h(V νq )].

In addition, for any atomic formula ϕ(x1, . . . , xp, X1) of the language
L2 and any valuation τ in the model A we define:

Kϕ,τ
def= {i ∈ I | Ai ² ϕ[(τ1(x1))i, . . . , (τ1(xp))i, (τ2(X1))i]}

and, as well:

E
def= {Kϕ,τ | B ² ϕ[h(τ1(x1)), . . . , h(τ1(xp)), h(τ2(X1))]}.

From the above it follows that if Kϕ,τ ∈ E then |Kϕ,τ | = α (basic formu-
las are Horn formulas). In fact, we have more: every finite intersection of
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elements of E is of cardinality α (thus, in particular, E has the finite inter-
section property). For any given finite set of atomic formulas ϕ1, . . . , ϕn

we can assume, without loss of generality, that they do not have com-
mon variables, consequently that just one valuation is in question (let it
be τ). The assumption that |⋂n

k=1 Kϕk,τ | < α would imply that for the
corresponding valuation in B this model satisfies the disjunction of the
negations of given atomic formulas (for it is a Horn formula) and if, for
example, B satisfies the formula ¬ϕj , 1 ≤ j ≤ n, it follows Kϕj ,τ /∈ E, a
contradiction.

Let Ψ be the (proper) filter generated by E. In the end we claim that
one isomorphic mapping of the model

∏
ΨAi onto the model B is given

by: f([a]) = h(a), f(q(U)) = h(U) (clearly, a ∈ A, [a] = {b ∈ A | {i ∈ I |
ai = bi} ∈ Ψ}, U ∈ O and q(U) = {[a] | a ∈ U}).

Firstly we show that f is well-defined. Let us suppose that for a, b ∈ A,
[a] = [b]. Then if τ is the valuation mapping x onto a and y onto b we have
Kx=y,τ ∈ Ψ, whence for some finite family of elements from E, let it be
Kϕ1,τ1 , . . . ,Kϕn,τn , it holds:

⋂n
k=1 Kϕk,τk

⊆ Kx=y,τ . As in the previous
consideration we can assume that the formulas ϕk, k = 1, . . . , n, and x = y
do not have common variables and that all valuations τk, k = 1, . . . , n,
are equal to τ . Let ψ ≡ ϕ1 ∧ . . . ∧ ϕn =⇒ x = y. Obviosly, the formula
ψ is satisfied in all models Ai, i ∈ I, for the corresponding valuations
determined by τ . If i ∈ ⋂n

k=1 Kϕk,τ then both the antecedent and conse-
quence of ψ are satisfied, and if i 6∈ ⋂n

k=1 Kϕk,τ , then the antecedent is
not satisfied. By (∗) and the definition of E both the formula ψ and its
antecedent are satisfied in the model B for the valuation h ◦ τ . Thus the
consequence is satisfied as well (for the same valuation) which just means
that f([a]) = h(a) = h(b) = f([b]).

Suppose now that q(U) = q(V ), i.e that {i ∈ I | Ui = Vi} ∈ Ψ, or, in
other words that K

def= {i ∈ I | Ai ² ∀x(x ∈ X ⇐⇒ x ∈ Y )[Ui, Vi]} ∈ Ψ.
Again, with the same notation and assumptions as a moment ago, we have⋂n

k=1 Kϕk,τ ⊆ K. The formula ψ ≡ ϕ1∧. . .∧ϕn =⇒ ∀x(x ∈ X ⇐⇒ x ∈ Y )
is equivalent to the Horn formula ϑ ≡ ∀x((

∨n
k=1 ¬ϕk∨¬x∈X∨x ∈ Y ) ∧

(
∨n

k=1 ¬ϕk ∨ x ∈ X ∨ ¬x ∈ Y )). Again ψ holds in all models Ai, i ∈ I,
and again it and its antecedent are satisfied in B for the valuation h ◦ τ .
Thus f(q(U)) = h(U) = h(V ) = f(q(V )).

Obviously, f is a surjection. But f is an injection too. For let h(a) =
f([a]) = f([b]) = h(b). Then B ² (x = y)[h(a), h(b)] and, consequently,
Kx=y,τ ∈ E (⊆ Ψ), where, of course, we assume: τ(x) = a, τ(y) = b. Thus
{i ∈ I | Ai ² (x = y)[ai, bi]} ∈ Ψ and [a] = [b].
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Further we prove: for any U ∈ O, it holds: f ′′(q(U)) def= {f([a]) | [a] ∈
q(U)} = f(q(U)).

(⊆) Let [a] ∈ q(U). Then {i ∈ I | ai ∈ Ui} = {i ∈ I | Ai ²
(x ∈ X)[ai, Ui]} ∈ Ψ. As in the proof of well-definability of f , we obtain
B ² (x ∈ X)[h(a), h(U)], that is h(a) = f([a]) ∈ f(q(U)) = h(U).

(⊇) Let b ∈ f(q(U)) = h(U) and b = h(a) = f([a]). Thus, by def-
inition of E, Kx∈X,τ ∈ E (⊆ Ψ) (surely, τ(x) = a, τ(X) = U) and so
{i ∈ I | Ai ² (x ∈ X)[ai, Ui]} ∈ Ψ, that is [a] ∈ q(U), which proves:
b = f([a]) ∈ f ′′(q(U)).

Now if f(q(U)) = f(q(V )), i.e. f ′′(q(U)) = f ′′(q(V )), then
f−1(f ′′ (q(U))) = f−1(f ′′(q(V ))) and, since the restriction of f on the set∏

Ai/∼ is a bijection, we have q(U) = q(V ).
The homomorphic property of f follows from the analogous result for

first order logic, while it is already proved for the relation ∈ . ¤
Theorem 3.6 (CH). An L2-sentence ϕ is preserved under reduced

products of weak structures iff there is a Horn L2-sentence ϑ such that

ϕ
w⇐⇒ ϑ.

Proof. (⇐=) We show that any Horn L2-formula is preserved under
reduced products of weak structures. Practically, there is no difference
from the proof of the analogous statement of the first order logic. Let us
consider just the case ϕ ≡ ∃Y ψ(x, X, Y ) (naturally, we use induction).
Fix f , U and suppose Iϕ = {i ∈ I | Ai ² ∃Xψ

[
fi, Ui

]
} ∈ Ψ. For

i ∈ Iϕ let Vi ∈ Oi be such that Ai ² ψ
[
fi, Ui, Vi

]
, otherwise choose Vi

arbitrary. Let V =
∏

Vi. Then Iϕ = Iψ = {i ∈ I | Ai ² ψ
[
fi, Ui, Vi

]
},

thus, by inductive hypothesis
∏

ΨAi ² ψ
[
[f ], q(U), q(V )

]
and furthermore

∏
ΨAi ² ∃Y ψ

[
[f ], q(U)

]
, i.e.

∏
ΨAi ² ϕ

[
[f ], q(U)

]
.

(=⇒) Let ϕ be an L2-sentence preserved under reduced products of
weak structures. If ϕ is inconsistent we simply put ϕ

w⇐⇒ ∃x¬(x = x).
So let ϕ be consistent. Without loss of generality we can assume that the
language L2 is countable. Let Σ def= {ψ ∈ HSL2 | ²w ϕ =⇒ ψ}. Clearly, Σ
is a nonempty set (∃x (x = x) ∈ Σ), closed under conjunction. We show
Σ ²w ϕ (for then, certainly, we have for some finite subset of Σ, let us say
Σ1, Σ1 ² ϕ and

∧
Σ1 is the formula we are looking for). Let M be a weak

model of Σ. If it is a finite model (|M ∪OM| < ω), thus saturated, we put
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B def= M. Otherwise, keeping in mind Löwenheim-Skolem theorem, we can
assume that M is (infinitely) countable. Then, if B def=

∏
ΨM, where Ψ is

some nonprincipal ultrafilter over ω, it holds: B ≡L2 M and B is saturated
model of cardinality ω1. Let us now define ∆ def= {ψ ∈ HSL2 | ϕ ∧ ¬ψ has
a weak model}. For any ψ ∈ ∆ we choose a countable weak model Aψ of

ϕ ∧ ¬ψ. Let I
def= ω × ∆ and A(n,ψ)

def= Aψ. Now the conditions of the
previous lemma are satisfied. For, if η ∈ HSL2 and |{i ∈ I | Ai 2 η}| < ω,
then η ∈ Σ (since η ∈ ∆ would imply ω × {η} ⊆ {i ∈ I | Ai 2 η}), thus,
in particular, B ² η. By the lemma, there exists a filter Φ on I such that
B ∼= ∏

ΦAi. But ϕ ∈ RPSw
L2

, whence
∏

ΦAi ² ϕ, consequently, B ² ϕ
and M ² ϕ. ¤

Theorem 3.7. Each Horn Lt-formula is preserved under reduced pro-
ducts of basic structures (HFLt ⊆ RPF b

Lt
).

Proof. Let ϕ ∈ HFLt and let {Ai | i ∈ I}, Ψ, f and U be as in

Definition 3.4. By Lemma 3.3, there is ϑ ∈ HFL2 such that ϕ
c⇐⇒ ϑ,

thus also ϕ
b⇐⇒ ϑ. Let J = {i ∈ I | Ai ² ϕ

[
fi, Ui

]
} ∈ Ψ. By the

previous theorem,
∏

ΨAi ² ϑ
[
[f ], q(U)

]
. But

∏
ΨAi is a basic structure,

so
∏

ΨAi ² ϕ
[
[f ], q(U)

]
. ¤

Lemma 3.8. There is a sentence ϑbas ∈ HSL2 such that for each weak
L2-structure A there holds:

A ² ϑbas iff A is a basic structure.

Proof. If ϕbas ≡ ϕ1 ∧ ϕ2, where ϕ1 ≡ ∀x∃X(x ∈ X) and ϕ2 ≡
∀X∀Y ∀x(x ∈ X ∧ x ∈ Y =⇒ ∃Z(x ∈ Z ∧∀z(z ∈ Z =⇒ z ∈ X ∧ z ∈ Y ))),
then for each weak structure A we have: A ² ϕbas iff A is a basic structure.
Obviously, ϕ1 ∈ HSL2 , while, by Lemma 2.3 and necessary tautologies,
ϕ2

w⇐⇒ ϕ′2 where

ϕ′2 ≡∀X∀Y ∀x∃Z∀z
(
(¬x ∈ X ∨ ¬x ∈ Y ∨ x ∈ Z)

∧ (¬x ∈ X ∨ ¬x ∈ Y ∨ ¬z ∈ Z ∨ z ∈ X)

∧ (¬x ∈ X ∨ ¬x ∈ Y ∨ ¬z ∈ Z ∨ z ∈ Y )
)
.

So we can put: ϑbas ≡ ϕ1 ∧ ϕ′2 ∈ HSL2 , for, surely, ϑbas
w⇐⇒ ϕbas. ¤
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Lemma 3.9. Let {Ai | i ∈ I} be a family of weak L2-structures, Ψ a

filter on I and I1 ∈ Ψ. If Ψ1 = {F ∩ I1 | F ∈ Ψ}, then we have:

(a) for each formula ϕ(x, X) ∈ FormL2 , each f ∈ ∏
Ai and each

U ∈ ∏Oi it holds

∏
Ψ
Ai ² ϕ

[
[f ], q(U)

]
iff

∏
Ψ1
Ai ² ϕ

[
[f |I1 ], q1(U |I1)

]
,

of course, the index set in the second product is I1;

(b)
∏

ΨAi ≡L2

∏
Ψ1
Ai.

Proof. The proof of (a) is by the usual induction; it is a consequence
of the classical result (for first-order parts) and the result concerning the
reduced ideal products given in [5]. ¤

Theorem 3.10 (CH). An Lt-sentence ϕ is preserved under reduced

products of basic L2-structures iff there exists a Horn L2-sentence η satis-

fying ϕ
b⇐⇒ η.

Proof. (=⇒) Suppose ϕ ∈ RPSb
Lt

. Let us prove

(1) ϕ ∧ ϑbas ∈ RPSw
L2

.

Let {Ai | i ∈ I} be a family of weak L2-structures, Ψ a filter on I and let
J

def= {i ∈ I | Ai ² ϕ ∧ ϑbas} ∈ Ψ and I1
def= {i ∈ I | Ai ² ϑbas}. Since

J ⊆ I1, we have I1 ∈ Ψ (and J = J ∩ I1 = {i ∈ I1 | Ai ² ϕ} ∈ Ψ1). Now,
{Ai | i ∈ I1} is a family of basic structures and because of ϕ ∈ RPSb

Lt
, it

follows:

(2)
∏

Ψ1
Ai ² ϕ.

By Lemma 3.8, ϑbas ∈ HSL2 , thus ϑbas ∈ RPSw
L2

and
∏

Ψ1
Ai ² ϑbas. By

(2),
∏

Ψ1
Ai ² ϕ∧ϑbas and by the previous lemma

∏
ΨAi ² ϕ∧ϑbas which

proves (1). By Theorem 3.6, there is η ∈ HSL2 such that ϕ ∧ ϑbas
w⇐⇒ η,

thus also ϕ ∧ ϑbas
b⇐⇒ η. But clearly, ϕ ∧ ϑbas

b⇐⇒ ϕ and so ϕ
b⇐⇒ η.

(⇐=) Let ϕ ∈ SentLt , η ∈ HSL2 , ϕ
b⇐⇒ η and let {Ai | i ∈ I} be a

family of basic structures. If Ψ is a filter on I and Iϕ = {i ∈ I | Ai ² ϕ}
∈ Ψ, then, because of ϕ

b⇐⇒ η, we have Iϕ = Iη (= {i ∈ I | Ai ² η}).
Again by Theorem 3.6,

∏
ΨAi ² η and being

∏
ΨAi a basic structure too

we obtain
∏

ΨAi ² ϕ. ¤
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Lemma 3.11. By the invariance of Lt-sentences, for an Lt-sentence
ϕ holds:

ϕ ∈ RPSb
Lt

iff ϕ ∈ RPSt
Lt

.

Example 3.12. The separation axioms T0, T1, T2 and the regular prop-
erty of topologies are expressed by the formulas, respectively:

ϕT0 ≡ ∀x∀y (x = y ∨ ∃X 3 x¬y ∈ X ∨ ∃Y 3 y ¬x ∈ Y );

ϕT1 ≡ ∀x∀y (x = y ∨ ∃Y 3 y ¬x ∈ Y );

ϕT2 ≡ ∀x∀y (x = y ∨ ∃X 3 x∃Y 3 y ∀z(¬z ∈ X ∨ ¬z ∈ Y ));

ϕreg ≡ ∀x∀X 3 x∃Y 3 x∀y (y ∈ X ∨ ∃Z 3 y ∀z(¬z ∈ Z ∨ ¬z ∈ Y ))
∧ ϕT1 .

By Lemma 2.4 we can find the prenex forms of these formulas:

ϕT0

c⇐⇒ ∀x∀y∃X 3 x∃Y 3 y (x = y ∨ ¬y ∈ X ∨ ¬x ∈ Y );

ϕT1

c⇐⇒ ∀x∀y∃Y 3 y (x = y ∨ ¬x ∈ Y );

ϕT2

c⇐⇒ ∀x∀y∃X 3 x∃Y 3 y∀z (x = y ∨ ¬z ∈ X ∨ ¬z ∈ Y );

ϕreg
c⇐⇒ ∀x∀X 3 x∃Y 3 x∀y∃Z 3 y ∀z (y ∈ X ∨ ¬ ∈ Y ∨ ¬ ∈ Z).

All sentences on the right side are Horn Lt-sentences, thus preserved under
reduced products of topological spaces. It holds as well for the separation
axiom T3 (for ϕT3 ≡ ϕT1 ∧ ϕreg and a conjunction of Horn formulas is
a Horn formula). More general result considering separation axioms and
reduced ideal-products can be found in [5]. In connection with it let us
note that a Horn Lt-sentence does not have to be preserved under reduced
ideal-products, even if the condition (ΛΨ) is satisfied. For instance, the
property discrete of topologies is expressed by Horn Lt-sentence:

ϕdisc ≡ ∀x∃X 3 x ∀y (y = x ∨ ¬u ∈ X),

which, however, is not preserved under Tychonoff products.

Following one part of the proof of Proposition 6.2.6. from [2] we obtain:

Lemma 3.13. A disjunction of Horn Lt-sentences is preserved under
reduced powers of basic structures.

The above lemma does not hold for reduced products. One simple ex-
ample gives the reduced product of the family of topological spaces {Ai =
〈Ai,Oi〉 | i ∈ ω}, ∏

ΨAi, where all spaces have the same “ground” set
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{0, 1}, and, for k even, topological spaceAk is discrete, for k odd, indiscrete
while the filter Ψ is the Fréchet filter. If ϕindisc ≡ ∀x∀X 3 x∀y (y ∈ X),
then

{i ∈ ω | Ai ² ϕdisc ∨ ϕindisc} = ω ∈ Ψ,

but, obviously,
∏

ΨAi is neither Hausdorff nor indiscrete.
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