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New proof of a theorem on decimal periodicity’)

By CHARLES F. OSGOOD?) (Haverford, Pa) and ROBERT ]. WISNER?) (Princeton, N. |.)

1. Introduction. The subject of periodic decimal fractions is indeed
a very old one. As a topic, it was deemed importart enough by DICKSON so
that he devoted a chapter to its discussion in his Hisfory [2]; and one may
there see the role it has played in the development of other mathematical
notions.

Let us first recall the basic terminology of the subject. The decimal
representation of the (rational) number x is called periodic if the digits even-
tually repeat, i. e., if there exist integers r =0 and s>0 for which

¥ o " = ‘m_' _a_f_
(1) 10"x—[10"x] = 2 15
and
(2) Qesri =— Ai = l, 2, R

for the decimal digits a; (as usual, the square brackets in (1) refer to the
»greatest integer” function). If s is the least positive integer for which (2) is
true, then the sequence a,a,...a,, obtained from (1), is called the period of x.
This least number s is called the length of the period; alternately, we also
refer to s as the periodicity of x.

It was learned by the early investigators that the basic problem of
determining the periodicity of a decimal fraction a/b, in lowest terms, is
quickly reduced to the determination of the periodicity of 1/p for each prime
divisor p of b. (See [1] and [2]).

Of course, to each prime p there corresponds a unique positive integer
s: the periodicity of 1 p. It is natural to ask if each positive integer is used
in this correspondence; that is, given any positive integer s, is there a prime
p such that 1 p has periodicity s?
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The answer to this (and more) was first given by BANG in his investi-
gations of a function devised by SyLVESTER. BANG’s result was given later
by DicksoN and was generalized in a paper by BIRKHOFF and VANDIVER.
(References to these papers may be found by consulting [2, Chapter XVI].)
The methods are algebraic, involving theorems about congruences and cyc-
lotomic polynomials with corresponding reference to roots of unity, group
theoretic notions, etc.

We give here an answer by completely elementary notions, using no-
thing but inequalities and logarithms; and since the notions are completely
elementary, we have kept the language of the paper completely elementary
as well. It is interesting that what amount to rather crude arithmetic estimates
is enough to obtain the result.

For the sake of completeness, we prove in § 2 a divisibility theorem
(a property known to JoHN WALLIS [3]) which gives a criterion for finding
the periodicity of the reciprocal of a prime. In § 3, we give by use of this
criterion a new proof that each positive integer qualifies as the length of
the decimal period of the reciprocal of some prime.

Partly from respect for the history of the subject, this paper deals with
decimal properties only. It is clear that the basic notions hold for bases
other than 10 and that the proof of the theorem of § 3 can be modified to
cover a certain few otlier bases. The stronger machinery of the aforementio-
ned algebraic methods seems necessary, however, to prove the correspondingly
stronger result to the effect that the base is irrelevant with the exceptions
that when base 2 is used, no prime p has the property that 1/p has peri-
odicity 6; and when any base 2¢—1 is used, no prime p has the property
that 1/p has periodicity 2. The point is that in the algebraic arguments of
BANG et al, the number 10 plays no role, whereas 10 does play a very
important part in our ability to make the needed estimates.

2. Divisibility and periodicity. If x is the reciprocal of a prime

other than 2 or 5, then the integer r in (1) can always be chosen to be 0;
and so for reciprocals of such primes p, we may write (1) as

3) L

Now supposing s to be the length of the period of this number 1/p, so that
(2) hoids for the digits a. of (3), we have that

= ks
IOJ__—_! . N\ a;: - 10%-i
:; '

p
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an integer. On the other hand, it is clear that for any integer j with
0<j<s, the number (10*7—1)/p is not an integer. We have proved, then,
the following

Proposition. The positive integer 10" —1 is divisible by p, a prime
distinct from 2 and 5, if and only if s divides m, where s is the decimal
periodicity of 1/p.

This proposition thus gives a divisibility criterion for determining the
periodicity of the reciprocal of a prime p: the length of the decimal period of
1p is s if p divides 10°—1 but does not divide any of the numbers
10'—1, 10°—1,...,10""'—1. For example, 10'—1=3% 10°—1=3"-11,
10°—1=3"-37, and 10'—1=3*-11-101; therefore 1/3, 1/11, 137 and 1/101
have periodicities 1,2, 3 and 4, respectively.

This means that if for each positive integer s, we always obtain a
prime factor of 10°—1 which has never occurred in the factorization into
primes of any of the numbers 10" —1 where 1=k = s—1, then each positive
integer s qualifies as the decimal periodicity of the reciprocal of some prime.

3. The divisibility theorem. The pricipal result of this paper is a
new proof of the

Theorem. For each positive integer n, the number 10" —1 is divisible
by a prime which does not divide any of the numbers 10" —1 where k is a
positive integer less than n.

ProoF. The theorem is trivial for n= 1, and we proceed by first con-
sidering the cases in which n is (1) a prime, (2) the product of two primes,
and (3) the product of three primes. Covering these three special cases is
necessary for the final argument in which n is (4) the product of at least
four primes.

Case 1: n=p,, a prime. Let p be a prime divisor of 10" —1. By the
Proposition of §2, p, must be a multiple of the periodicity of 1/p; and
since p, is a prime, this means that p can occur as a prime factor of
10F—1 where O<k<p, only in the case k— 1. But 10'—1- 3", while
10" —1-=99...9 (p, digits). Dividing 10”"—1 by 9, we obtain 11...1
(p, digits), and we shall show that this number has a prime factor other
than 3. It is well known that if 3 divides 11...1 (p, digits), then the sum
of these p, digits must be a multiple of 3. Hence, p, is a multiple of 3;
and since p, is a prime, p,— 3. It remains only to check that 10°—1 is not
a power of 3, and this is not so since 10°—1=3"- 37.

Case 2: n- p,p,, the product of two primes. Again by the Proposition
of § 2, note that we need only show 10"""—1 to be divisible by a prime
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which divides neither 10" —1 nor 10""—1. Now notice that
10" —1 = {14+ (10" —1)}"*—1

4 o
v = p.(10" —1)+ ‘5""-(-‘%’!- D 0m 1y 4o 110" —1)".

A close examination of (4) shows that a prime factor of 10" —1 cannot
divide 10" —1 any more often than it divides p,(10"—1). And by inter-
changing p, and p, in (4), we see through symmetry that a prime factor of
10" —1 cannot divide 10" —1 any more than it divides p,(10™—1). Now
if pp—=p.= 2, it is simple to check that the theorem is true; so we assume
P42 or p,s=2. With this assumption, it follows from Lemma 1 below that

(5) P+ pa-log (pp) < pp.,

where here and in the sequel all logarithms are taken base 10. By (5), we
obtain
(6) Prpe - 10772 < 1077,
and since
107 > 10" —10"—10" 41,
we have as a result of (6) that
(7) pp.(10" —1)(10"—1) <10 —1,

This inequality (a special case of ,the idea” of our proof) assures us that
107""*—1 must contain a prime factor which divides neither 10" —1 nor
10" —1, and we now need only establish the lemma which gives (5).

Lemma 1. If a and b are integers with a=2 and b=3, then
a-+b-+log(ab)--ab.

ProOOF Induction: note that 2434 log6<6 and that if a-}b-+
-+ log (ab)<ab, then

a+14+b+log(ab+b)=a+14b-log(ab- b)+log (ab)— log (ab)

<ab+1 —}-logl 0:1'
<ab-+2
<(a--1)b.

Case 3: n= p,p.p., the product of three primes. As before, we need
only show that 10" —1 contains a prime factor which is not a factor
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of 10""™—1, 10" —1, or 10""—1. An expression similar to (4) can be
written to show that a prime divisor of 10”"*—1 cannot divide 10" —1
any more often than it divides p,(10""*—1). By symmetry, the preceding
sentence is true for each of the other two combinations of subscripts, and
so the theorem will be verified for this case if we can establish the inequality

(8) p};(lof’h".'___ﬁl)_‘(,T(IOI':J':l_l) _p:(lof’lf’:l_ 1) ]0!‘!.“'_'!".1_]’

the analog of (7). To obtain (8), we will use a lemma parallel in statement
and purpose to Lemma 1.

Lemma 2. If a, b and c¢ are integers with a=2, b=3, ¢=8, then
ab-+4bc+ac--log (abec)<abe.

PROOF. Proof is again by induction. First, 624164 log 48 < 48.
Next, if ab-+bc-+ac—+log(abc)<abe, then similar to the proof of Lemma
1, we have

(@a+1)b+be+(a+1)e+log(a--1)be< clbc+b+c‘+log‘ “;ﬂ : |
<abc+b-+c41
<abc+be=(a+1)bc,

and the lemma is proved.

And now if p,, p., p; is a set of three primes satisfying the hypothesis
of Lemma 2, we obtain

PP Paps = D ps 108 (P paps) < PP
Thus
plp"p" 3 lo.l“! Pathalisti'1 1% & ]O;“l e 'y

from which it follows that
(pH 5 ]Oi‘lf‘:)(p] : lor-'z}'u)(p! ; 10.:*1 f’a) »;‘\' ]Ol'l:'"_'f':i’

and therefore (8) is true.

This leaves only the job of checking those cases in which the three
primes do not satisfy the hypothesis of Lemma 2. These cases occur when
n is of the form 4p, (i. e, when p,= p,=—2) or when n is any of the num-
bers 18, 27, 30, 42, 45, 50, 63, 70, 75, 98, 105, 125, 147, 175, 245, 343. In all
but four of these cases (namely, when n is 30, 42, 70, or 105), a prime factor
is repeated; and when a prime factor repeats, we need only establish a
variant of (8):

(g) p1 ( lOJ‘-I'm___ l) ,p:(‘loﬂl s ] ) < lo;q Paty ] )
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This is because two of the factors on the left hand side of (8) will be
identical (the inequality (9) being obtained by assuming either p,=p. or
p,— p;). Application of Lemma 1 gives (9). A rephrasing of Lemma 2 is
possible when n is 70 or 103, the crucial inequalities being

10435414 log 71070
15435 -- 21 4 log 105 < 105,

and so (8) is true for these cases. If n is 30 or 42, then (8) is not ftrue,
but the fractions 1/211 and 1127 have these respective periodicities; and
211 and 127 are both primes.

Case 4: n is the product of at least four primes. As in the preceding
cases, the product

(10) P, (10" —1)p, (10" —1)... pi(10""*—1),

where n=p,p....p; is the factorization of n into primes, contains all the
possible prime factors of 10°—1 which have arisen in the factorization of
100 —1 with k=1,2, ..., n—1. Indeed, the product (10) contains twice those
primes which have arisen in the factorizations of 10" —1, and so it will
be sufficient to show, as in (7) and (8), that the inequality

11 p.(10""—1)
11) A ]

is true. (Actually, an alternate form of (8) along these lines is possible.)
The inequality (11) is implied by

Ilp:-10"
i=1

<10°.
I QU —

This inequality may be expressed in the equivalent form

(12) log n -_‘_3 — Nlog (10"""—1)<n,
—_p -
and (12) may be written
: & n 100y
(13) logn-{-%p;—#;;;—zm ST <n.
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Since
<. (101 _ 1
—ﬁlog‘ 10" _%log '.1 "0 |
P SR N
=7 210" —1)
_1ly 10
2 !

the inequality (13) is implied by

14 O, N,
(14 A Y

b —

S L.
&5 10M%7

Because 4=4, the integer n/p;p, is the product of at least two primes,
and therefore n/p.p,=4. It follows that

1~ 10

1 1
2 ~ 10"%" 2 1007410 1800’
and so (14) is in turn implied by

& n v n 1
g a4 > —— > + o <N
E0 T = T = pip;, T 1800
which we now write as
logn  ~- 1 5 1 1 :
LI S - <},
n '"&Sipc S opp g3 1800 n

This last inequality is equivalent to

Now note that
1l gl
2% p;” 45D i
which means that (15) is implied by
(16) B A= TI ] T <"

But since 2! is the smallest possible value for n, we have

logn | M
n " 1800n 32
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making (16) implied by
(17) e

We note that the left hand side of (17) is a quadratic polynomial, and
it is easily seen that (17) holds whenever

which is clearly the case.
This completes the proof of Case 4 and of the Theorem.
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