Cn an entire function of order less than one
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1. R. P. Boas [1] has proved the following
Theorem. If f(z) is an entire function of order ¢(0=p<1) then
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(We are assuming that n(r) =0 if r <1, which can always be done without any loss
of generality.)

The purpose of this note is to give an alternative proof of the above theorem.
The proof is on lines similar to LitTTLEwooD see [2, p. 136].
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If «=2c then (1) is trivially true. Suppose « is finite. Then for f > we have
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Now
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where K is a positive constant because N(ry) =0 since 0= ¢ < 1. Hence integrating
(2) from r, to r we have
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Hence from (3) it follows that
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because if N(r)r'*# -0 as r <o, then

() r1+ﬂ for t=t,.

So
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which contradicts (3).
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Hence J\*’(r):»!(zrm for a sequence of values of r. Thus
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But lim sup 1—0& = lim sup -l-olgog—E_L)= 0, and since 0=p <1 so ¢, = g. Finally

since f can be taken arbitrarily close to « the result follows.
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