On the maximal number of disjoint circuits of a graph

By P. ERDOS and L. POSA (Budapest)

Throughout this paper G" will denote a graph with n vertices and k edges
where circuits consisting of two edges and loops (i. e. circuits of one edge) are not

permitted and Gy will denote a graph of n vertices and k edges where loops and
circuits with two edges are permitted. v(G) (respectively v(G)) will denote the num-
ber of edges of G (respectively G).

If x,, xs, ..., X; are some of the vertices of G, then (G—x;— ... —x,) will
denote the graph which we obtain from G by omitting the vertices x,, ..., x; and
all the edges incident to them. By G (x,, ..., x;) we denote the subgraph of G spanned
by the vertices xy, ..., x;. The valency of a vertex x —v(x) — will denote the number
of edges incident to it. (A loop is counted doubly.) The edge connecting x, and x,
will be denoted by [x,, x,], edges will sometimes be denoted by e, €5, .... (xy, X3,...X;)
will denote the circuit having the edges [x,, x,], ..., [Xx- 1, Xu], [x x,)

A set of edges is called independent if no two of them have a common vertex.
A set of circuits will be called independent if no two of them have a common ver-
tex. They will be called weakly independent if no two of them have a common
edge.

In a previous paper ERDOs and GaLLAl [1] proved that every

S [(2&9__1). (k—l)n—(k—1)2+(k5‘)]

contains k independent edges.

In the present paper we shall investigate the following question of Turanian
type (see 1): how many edges are needed that a graph should have to contain k
independent or weakly independent circuits? Put

f(n, k) =2k — 1)n— 2k + k.

Our principal result will be that for n=ny(k), k> 1 every Gjfx, contains k inde-
pendent circuits except if it contains 2k — 1 vertices of valency n—1 (its structure

is then uniquely determined). If k=1 trivially every Gi~ contains a circuit, but

there are of course graphs G\ ; where no vertex has valency n— 1 and the graph
nevertheless contains no circuit. Thus the restriction k=1 is necessary.

Clearly ny(k)=3k (since a circuit contains at least three vertices). For k=2
and k=3 ngy(k)=3k, but in general ny(k)=3k, but we will prove n,(k)=24k.
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Perhaps the following result analogous to (1) holds: Every

) Gi"y with /=max [(3k2_ l)+n—3k +2, (2k—1)n—2k1+k]

contains k independent circuits.

Denote by g(k) the smallest integer so that every (_;,(.'L’gm contains k weakly
independent circuits, We will show that g(2) =4 and that for every &

c,klog k<g(k)<c,klogk

where ¢, and ¢, are suitable absolute constants (the ¢'s throughout this paper will
denote suitable absolute constants). The exact determination of g(k) seems to be
a very difficult problem and we cannot even show that g(k)/log k tends to a cons-
tant. Further we do not know the value of g(3).

It is easy to see that g(2) =4 i. e. we will show that for every n =6 there exists
a Gu3y which does not contain two weakly independent circuits. To see this let
the vertices of our graph be x,, ..., x, and its edges

[xi xj], 1=i=3<j=6 and [x,, x44,), 6=k=n-1.

A simple argument shows that this Gy ; does not contain two weakly independent
circuits.

After completing our paper we found out that some of our results were known
to G. DirAc but he published nothing on this subject. In particular he proved that
for n=6 every GY,-s contains two independent circuits and that every G4%4 con-
tains two weakly independent circuits. He also proved that for n=6 every G
where the valency of every vertex is =3 and the valency of every vertex with at
most one exception is =4 contains two independent circuits and conjectured that
for n=3k every G'™ which is 2k-fold connected (i. e. which remains connected
after the omission of any 2k —1 of its vertices) contains k independent circuits.

Theorem 1. Let k=1, n=24k then every Gy x, either contains k independent
circuits or 2k — 1 vertices of valency n—1.

Our Theorem clearly implies that for n =24k every G}, , ., contains k inde-
pendent circuits (since a simple computation shows that a G k) Which has 2k —1
vertices of valency n— 1 has all its other vertices of valency 2k — 1 and its structure
is thus uniquely determined). n =24k could easily be improved a great deal, but
our method does not give any hope of best possible estimates.

Theorem 1. will be proved by a fairly complicated induction process and to
make this as painless as possible we will restate Theorem 1. in a very much more
complicated form but which will be more suitable for our induction process.

Theorem 1’. Every G," contains a circuit (k=1). For k=1 put

Sf(n, k) +(24k —n)(k—1) for n=24k
g(n, k) = f(n, k) for n=24k.
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Then if 3k =n=24k — 1 every Glir ko contains k independent circuits, and if n=24k
and ly=g(n, k) then every Gﬁ" ) contains k independent circuits except only if
lo=g(n, k) and G|’ contains 2k — 1 vertices of valency n—1 and n—(2k — 1) vertices
of valency 2k —1.

Since g(n, k) =f(n, k) for n=24k Theorem 1’ implies Theorem 1.
Theorem 1’ is trivial for k=1. It is also trivial for k=1 if 3k =n= 6k since

by a simple calculation
g(n k) = (g)

and for n=3k the complete graph contains k independent circuits.
First we prove two Lemmas.

Lemma 1. Let n=6k and assume that G'™ contains 2k vertices Xy, X, ..., X2z
of valency (x))=n—k (1=i=2k). Then G™ contains k independent quadrilaterals.

Denote by y,. ..., ¥,- 2 the other n—2k vertices of G'™. Consider a maxim a
system of independent quadrilaterals of the form

(X2i-15 Yai-1s X2 Y2i)s 1=i=1 1=k,

We shall show /=k. Assume /< k. Each of the vertices x,,., and x,,, , are connec-
ted with at least n —k vertices. Thus every vertex except possibly 2k vertices are
connected with both x,,,, and x,,,,, i. e. these are at least n —2k =4k of them
which are connected with both x,,,, and x,,,,. Since 2k +2/=4k — 2 there are
two further vertices y,,,; and y,,,, which are connected with both x,,,, and
X31+2. Thus the quadrilateral (X741, Y2741 X2142, V21+2) 15 independent of the
others, which contradicts our maximality assumption, which proves Lemma 1.

Lemma 2. Let n=2k and assume that every vertex of G'™ has valency =2k,
then G'™ contains k independent edges.

Lemma 2 can be proved from first principles in a few lines as follows:?) Let
€;=[x2;_y, X3}, 1=i=1t be a maximal set of independent edges. Assume f<k
(otherwise there is nothing to prove). But then since n =2k there are two vertices
of G' y, and y, distinct from the x;, 1=i=2t. y, and y, can be joined only to
the x; 1=i=2t (by our maximality assumption), and by the same assumption
if y, is connected to an endpoint of ¢; 1 =i=7¢ then y, can not be connected to
the other endpoint. Thus v(y,) +v(y,) =2r=2k which contradicts v(y;)=k. This
contradiction proved the Lemma.

Now we prove Theorem 1° by induction. Let K =1 and assume that Theorem 1’
holds for k — 1 and assume that it holds for every 6k <=m <n. (We already remarked
that it trivially holds for 3k = m = 6k). Then we shall prove it for n, and if we have
succeeded in this the proof of Theorem 1” and therefore Theorem 1 will be complete.

1y If Iﬂ::[g) G, will denots the complete graph of n vertices.

2) This proof is due to G. DIRAC (written communication).
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Assume first that our Gy i, contains 2k vertices of valency =n—k.
Then by Lemma 1. our graph contains k independent quadrilaterals and thus
Theorem 1’ is proved in this case.

Henceforth we can assume that G contains at most 2k — 1 vertices of valency
=n—k. If all the other vertices have valency <2k then the number of edges of
G is at most

Qk—1)(n—1)+Qk—1)(n—2k+1)
2

=f(n, k)

and equality can occur only if G contains 2k — 1 vertices of valency n —1 (i. e. these
vertices are connected with all the vertices of the graph), and G contains no other
edge, otherwise it would contain another vertex of valency = 2k). Thus the structure
of our G is uniquely determined (G can have this structure only if n=24k) and Theo-
rem 1" is proved in this case too.

Therefore we can now assume that G has a vertex — say x, — of valency I’
satisfying
2k=I'<n—k.

Let xy,...,xp, 2k=I'<n—k be the vertices of G connected with x, by an
edge. Assume first that in the graph G(x,, ..., x;) there is a vertex — say x; —
of valency k. It may be assumed that x, is not connected by an edge to any of
the vertices x,., ..., Xy, where r=k. Define the graph G, with n—1 vertices as
follows: Omit the vertex x, and all the /" edges incident to it, and add the edges
[xg, X, 4 1=i=!l—r (i.e. x, is connected in G, to all the vertices to which x,
is connected in G [except of course x,]). Clearly

v(G,) =v(G) —k
or

3) v(G) =g k)—k=g(n—1,k).

Thus by our induction hypothesis G, contains k independent circuits (from the
first inequality of (3) it follows that v(G,)=f(n—1, k) thus G, cannot have 2k — 1
vertices of valency n — 1 and n — 2k vertices of valency 2k — 1, i. e. the second alter-
native of Theorem 1’. is excluded). But then G must also contain k independent
circuits. To see this let C,, ..., C; be the k independent circuits of G, at most one
of these circuits — say C, — contains one or two of the new edges [x,,x,.],
1=i=/ —r, (if none of these circuits contains any of these edges, then C,, ..., C,
are k independent circuits of G). If C, contains only one of the new edges - say
[xy, X,+1] — then we obtain C{ by omitting [x,, x,+,] from C; and replacing it
by [xo, x;] and [x X,+,]. If C; contains [x,, x,] and [x,, x,+,] then in C{ these
are replaced by [x,, x,] and [xo, X,,¢]. In any case C7, ..., C, are k independent
circuits of G. Thus Theorem 1” is proved in this case too.

Assume next that all the vertices of G(x,, ..., x,-) have valency =k. Then
(since /'=2k) by Lemma 2. G(xy, ..., Xr) contains k independent edges e;=
=[x31-1, X3;), 1=i=k. Assume first that each of the e; are contained in at least
k—1 triangles (xy;_q, Y25 Y1), 1=t=k—1, 1=i=k where the y" are all dif-
ferent from xg, Xys 1200 X22e



On circuits of a graph &

In this case Theorem 1” easily follows since G contains k independent triangles.
To see this observe that it immediately follows from our assumptions that there
are k—1 independent triangles (x,;_q, X25 Vi), 1 =i=k—1. (xq, X351, X2:) is the
k-th independent triangle.

Henceforth we can thus assume that — say e, =[x,, x,] — is contained in
at most k — 2trianglesin the graph (G — xy — x5 — ... — X3). Put G, =(G — xo — Xy — X;).
Now we estimate v(G,) from below, by estimating from above the number of edges
of G incident to x,, x; and x,. v(x,)<n—k by our assumption. In G(xy, ..., X3;)
the vertices x; and x, are incident to at most 4k —3 edges. Finally every vertex
of (G—xg—x; —... —X,,) is connected with at most one of the vertices x; and x,,
except possibly k& — 2 vertices which might be connected with both. Thus we obtain
at most n —k — 3 further edges. Thus the total number of edges incident to xg, x,
and x, is at most

n—k—1+4k—-34+n—-k-3=2n+2k-"1.
Hence for k=2

v(G,)=v(G) —2n—2k+T=n—-3)(2k—3) -2(k—1)>+k +
@ +&(n, k)—f(n, k)=g(n-3,k—1)
since clearly
g(n k)—fn,k)y=gn—3,k—1)—f(n—3,k—1).
For k=2, we obtain
“4) v(Gy)=v(G)—2n+3=n-3.

Thus (4) and (4’) imply that by our induction hypothesis G, contains k — 1
independent circuits. These and (x,, x,;. x,) are together k independent circuits
contained in G. Theorem 1” is now proved.

If k=2 then the assertion of Theorem 1 holds for all »=6. The reader can
verify it for n =6 and then adapt our induction process to prove it for n=6.

Perhaps the following result is of some interest.

(m) . . .
Theorem 2. Let n=4k, then every Gsi—1yn-(2x-1y+1 Which contains no tri-
angle contains k independent circuits.

For k=1 the Theorem is trivial. We use induction and assume that it holds
for k —1. Let (xy, ..., x1,) = C, be the shortest circuit of G and denote by x}, .4, ..., X,
the other vertices of G. No two non-neighbouring vertices of C, can be connected
by an edge (for otherwise C, would not be the shortest circuit of G). Assume first
that /; =4. Then every x,, I, <=r=n can be connected to at most one vertex
of C, (for otherwise C, would not be the shortest circuit). Thus the vertices
Xy, ..., X1, are incident to at most n edges. Let C,=(x) 4, ..., X;,+;,) be the

shortest circuit of (G —xy —... —x;) and C3=(X;, 44,415 +++» X1, +1,+1,) the shortest
circuit of (G —x; —... —x;,4+,;,) etc. Thus we obtain the circuits Cy, ..., C, of length
4</,=...=[, and we assume that the graph (G—x; —...—Xi +...,1) contains

no circuit. If r=k our Theorem is proved. Assume r-=k. By our previous
argument we obtain that in (G—x;—...—xi; ;) the vertices of C;., are
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i
incident to at most n— >/, edges. Since (G—x; —...—x;,+..4;) has no circuit
=1

it has fewer than n— >/, edges. Thus the total number of edges of G is less than
t=1

nt 3 (—ly— . —1)=(+Dn— 3l =kn—5<(2%k—1)n—(2%k—1)
t=1 =1

for n=4k, an evident contradiction.

Assume next that /; =4. Then every vertex x,, 4 =r=n is connected with at
most two of the vertices x,, x,, x5, x,. Thus the number of edges incident to x,,
X3, X3, X4 1S at most

4+2(n—4)=2n—4.
Hence

V(G —x;—X3=X3—X)=v(G@)—2n+4=2k—1n—(2k—1)*—-2n+5=
= (2k—3) (n—4)— (2k —3)> + 1.

By our induction hypothesis (G —x; —x, —x3;—x,) contains k—1 indepen-
dent circuits which together with (x,, x,, x5, x4) gives k independent circuits of G.
Thus the proof of Theorem 2. is complete.

Now we show that Theorem 2. is best possible. Let G be a graph whose ver-
tices are Xy, ..., X,, and whose edges are [x;, x;] where 1 =i=2k — 1 <j=n. Clearly
G has (2k —1)n—(2k —1)? edges and does not contain k independent circuits.

If k=1 then this graph is the only G'(?,‘._,,,,_m_l); which contains no triangles
and does not contain k independent circuits, we leave the proof to the reader.

G. DirAc [2] proved that for n=4 every G3,- contains a topological complete
quadrilateral (i. e. it contains four vertices x,, X,, X3, X, any two of which are con-
nected by pairwise disjoint paths). We shall give a simple proof of this theorem
by our method. For n=4 the theorem clearly holds. We will assume that it holds

for n—1 and prove it for n. Our G, clearly contains a vertex x, of valency not
exceeding 3. If v(xy)<=3 then v(G—x,) =2n—4 and thus by our induction
hypothesis (G — x,) and therefore G contains a topological complete quadrilateral.
Assume that v(x,)=3 and let x,, x,, x; be the vertices connected with x, by an
edge. If [x,. x,], [xy, x3], [x,, x4] are all edges of G then G contains the complete
quadrilateral {x,, x,, x3, x4}. Thus we can assume that one of these edges — say
[x;, x,] — does not occur in G. Add the edge [x,, x,] to (G —Xx,), thus we obtain
a graph G’ having n—1 vertices and 2n—4 edges. By our induction hypothesis
G, contains a topological complete quadrilateral {y,, y,, 1, y4}. But it is immediate
that {y,, ¥,, ¥3, ¥4} is a topological complete quadrilateral of G. To see this observe
that the new edge [x,, x,] can occur in at most one of the connecting paths and
there it can be replaced by [x,, x,] and [x,, x;]. G. DIRAC showed by simple exam-
ples that not every Gj,_3 contains a complete topological quadrilateral, e. g. the
vertices are x,, ... , X, the edges [x,, x;], 2=j=n, [x;, xj], 3=j=n.

One could perhaps conjecture that for n=35 every Gi,-s contains a complete
topological pentagon, but the above proof breaks down and we can not even show
that there exists an absolute constant C so that for n=35 every G contains com-
plete topological pentagon.
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Theorem 3. Every Gy.a contains two weakly independent circuits.

In other words g(2)=4 (see the introduction). We use induction on n. Our
Theorem clearly holds for n=1. We will assume that it holds for n—1 and prove
it for n. If our graph contains a circuit of four or fewer edges, then our Theorem
is immediate, since by omitting the edges of this circuit a Gy 4_; remains with
n+4—i=n, thus it contains another circuit thus giving our two weakly indepen-
dent circuits. Thus we can suppose that our graph contains no circuit with fewer
than five edges. If our graph contains a vertex of valency one we omit this vertex
and obtain a G,.3"' which by our induction hypothesis contains two weakly inde-
pendent circuits. If x, is a vertex of valency two and x,, x, are the vertices connected
to x, by an edge then we define G, as the graph which we obtain from (G — x,)
by adding the edge [x,, x,]. Clearly G, has n—1 vertices and n+ 3 edges and thus
our Theorem again follows. If all vertices of G have valency =3 then it has at least
%n edges, or §n§n+4, which implies n=8. Butitis well known and easy to show
that every graph with fewer than 10 vertices every vertex of which has valency =3
contains a circuit of at most 4 edges (for 10 vertices this is false as is shown by the
well known Petersen graph). This completes the proof of Theorem 3.

Theorem 4. For every k=1
(5) ¢k log k=g(k)<=csk log k
where ¢, and ¢, are suitable absolute constants.

First we prove the upper bound in (5), (no attempt will be made to get a good
estimation for ¢,). We shall use induction with respect to k. For k =2 the inequa-

lity follows from Theorem 3. Assume that it holds for kA —1, we shall prove it
for k. As in the proof of Theorem 3. we can assume that every vertex of our graph

G iekiogky has valency =3. But then
v(G)=3n
or
(6) n=2c¢k log k.
First we prove
Lemma 3. Let n=2. Every graph G™ every vertex of which has valency =3

. 5% 5 log n
contains a circuit of at most 2[-10-3—2-- edges.

If our graph contains a loop or a circuit of two edges our Lemma is trivial.
Thus assume that such circuits do not occur in our graph. Let x, be any vertex
of G'. If G' contains no circuit of =2 edges, then all the vertices which can
be reached from x, in 7 or fewer edges are all distinct. Since every vertex of G'™
has valency =3 a simple argument shows that in 7 steps we can reach at least

14344321 =X n
log n

; s g 1
. Thus G'™ contains a circuit of length not exceeding 2 it
log 2 log 2 |,

vertices if 1= [

as stated.
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From-(6) and Lemma 3. our graph contains a circuit of length not greater

than
log n log (2¢,k log k)
2 [log 2] 2. I: g3 <1c, logk

for sufficiently large c,. If we omit the edges of this circuit we obtain a graph of
at most n vertices and more than

n+[c,k log k] — = logk>n+cz(k— 1) log k

edges. By our induction hypothesis our new graph contains kK —1 weakly inde-
pendent circuits, thus together with our first circuit we have our required k& weakly
independent circuits, which completes the proof of the right side of (5).

To prove the lower bound in (5) we need

Lemma 4. There exists a constant ¢3 =0 so that for every m there exists a Gam
which contains no circuit of length less than cy log m.

The proof of the Lemma is implicitely contained in a paper by ERDOs [3], but
for the sake of completeness we give it here in full detail.
Consider all graphs of m labelled vertices having 2m edges. The number / of

m
3
these graphs clearly equals (3m)' Denote these graphs by G,, ..., G, and denote

by f(G;) the number of distinct circuits of length not exceeding [c; log m] contained
in G;. We are going to estimate

IIN_

M“T > f(G)

from above. A simple combinatorial argument shows that the number of graphs G,
which contain a given circuit of & cdges equals

[
3m—k

The number of circuits of length k is clearly less than
(8) k! ('}’{’) <m,

Thus from (7) and (8) we obtain by a simple argument

(3)-+
1 [exlogm) k(‘z- )_[“-"09"'1 . 3mQGBm-—1)...3m—k+1)

S P e e

[c3log m]
< k Vy
- 10* <=m'":

k=3
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if ¢, is a sufficiently small absolute constant (again no attempt is made to get a
good estimate for ¢; since as in the previous cases there seems no hope at present
to obtain the best possible value for ¢,). From (9) we obtain that at least one of
our graphs — say G, — contains fewer than m'’ circuits of length <[c; log m].
Omitting one edge from each of these circuits we obtain a graph of m vertices and
more than 3m —m'/2 = 2m edges which contains no circuit of length less than ¢, logm,
which proves Lemma 4.

Assume first k =k, and let ¢, =0 be a sufficiently small absolute constant
and put m =[c,k log k]. Then by Lemma 4. there is a G5 which contains no circuit

of length <c, log m. Therefore our G%, contains at most

2m

7{k
cylogm

weakly independent circuits, if ¢, is sufficiently small. On the other hand our graph
has 2m=m +[c.k log k] edges, which completes the proof of the left side of (5)
for k=ky. But clearly for 2=k=k, g(k)=g(2)=4, thus if ¢, is sufficiently
small (5) holds for all k=2 and thus Theorem 4. is proved.

If we have already constructed a Gf,,”'ﬁ[c,* ogky Which does not contain k we-
akly independent circuits, we can construct such a G," .« ogky for every n=m

by adding a path of n —m new vertices and edges to our Gf,."',,’[qk log k] +
Finally we consider the following question: Let m=n and consider a graph

GY. Define h(G,') as the length of the shortest circuit of our Gy . Put

f(n, m)=max h(G,")
where the maximum is taken over all graphs G .

Trivially f(n, n)=n and it is not difficult to show that

f(n,n+1)= [2";2].

The determination, or even the estimation, of f(n, m) for general n and m seems
a difficult problem.

Theorem 5. Put m=n+d,d=1. Then we have

(n+d )_l_o;g_d

(10) fn,n+d)<c, p

and to every constant C =0 there exists an A(C) depending only on C so that

(11) S v d) =400 2 f_d;_l?ﬂ ,

(11) shows that for d <= Cn (10) gives the correct order of magnitude for f(n, m).
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From Theorem 4. every Gy4 contains ¢, d/log d weakly independent circuits,
thus at least one of them has length not exceeding

(n+d)log d-=:c (n+d)logd
Cs d ¢ d
for sufficiently large ¢,, which proves (10).

We shall only outline the proof of (11). Assume first -:—:-éd-c:("n. By the same

method as used in Lemma 4. we can construct a G4 the smallest circuit of which
has more than ¢, log n edges (¢, depends on C and tends to 0 as C tends to infinity),
which implies (11) by a simple calculation.

n g B o 8 2
Assume next d-:-z. By Lemma 4. there exists a GYY all circuits of which have

_n_
2d
Thus we obtain a graph of m=n vertices and m +d edges the smallest circuit of
which has length not less than

(12) (I:zi]— l)(‘j ]og d;.(-1 (’L"f{; logd.

By adding a path of n—d new edges and vertices to this graph we obtain a
Gnya the shortest circuit of which satisfies the inequality (12), thus (11) and the-
refore Theorem 5. is proved.

It would be easy to strengthen Lemma 3. as follows: Let C—-<= then there
exists an & which tends to 0 as C tends to infinity so that every Gic,; contains
a circuit of length less than & log n, but we are far from being able to determine
the exact dependence of & from C.

length =c4 logd. Put on each edge of this graph [ --1 vertices of valency 2.
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