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On certain embeddability criteria for group amalgams
By B. H. NEUMANN (New York) and JAMES WIEGOLD (Manchester)

1. Introduction

Corresponding to the free product, the direct product, and the various regular
products of groups, intermediate between the free and direct products, that have
been introduced by GOLOVIN, MORAN, and others, one can introduce the gene-
ralized free product, the generalized direct product, and the various generalized
products that are intermediate between them: these generalized products are charac-
terized by the fact that their constituents need not intersect trivially. The simplest
case, and the only one we shall here be concerned with, is that of two constituent
groups A and B intersecting in a subgroup H, and thus forming the amalgam

A=am(A4, B; H).

When the amalgamated subgroup H is not the trivial group, the generalized pro-
ducts need not exist; and one naturally asks for existence criteria.

Such existence criteria are known for the generalized free product, where a
classical theorem of SCHREIER [3] says that the criterion is void, in other words, the
generalized free product of an amalgam of two groups always exists; for the gene-
ralized direct product, where the necessary and sufficient condition for existence
is simply that H is central in both 4 and B (see, for example, [2] and the literature
there quoted); and for the generalized GoLovIN second nilpotent (or GN,) product,
where the necessary and sufficient conditions are unexpectedly complicated, and
expressed in terms of homomorphisms of certain subgroups of the tensor product
of 4 and B into 4 and into B (see [4]). These last conditions may appear unnatural,
and it would be greatly preferable to have a criterion expressed in terms of the
given groups A, B, H and such of their subgroups as can be obtained from them
by some simple operations. However, the second author conjectured in [4, Con-
jecture 7.11] the non-existence of such existence criteria, and the present note will
confirm this conjecture.

We shall here be concerned with generalized free nilpotent products and gene-
ralized free soluble products; they are instances of. generalized free verbal products,
depending on a verbal subgroup V of the free product of the constituent groups.
The precise definition of a generalized free verbal product need not be given here;
instead we shall use an existence criterion which — within a suitably narrowed-
down class of group amalgams — is necessary and sufficient for the existence of
the generalized free verbal product. To the verbal subgroup V there corresponds.
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a variety B of groups; thus for example, if ¥ is the second derived group, then B
consists of the metabelian groups, and the corresponding verbal product is called
a metabelian product. The criterion we shall use is the following.

Theorem 1. 1. If A and B belong to the variety B then the generalized free verbal
product, corresponding to this variety, of the amalgam

A=am(A, B; H)
exists if, and only if, A can be embedded in a group of the variety 8.

We omit the proof,') which is not deep but would, of course, require a defi-
nition of the generalized free verbal products. The theorem can be extended to amal-
gams of more than two groups.

It should be noted that this is not a very useful criterion, partly because of
the severe restrictions placed upon the amalgam, partly because the embeddabi-
lity of the amalgam may be very difficult to decide from its intrinsic properties.
The use of the theorem lies for us in the substitution of embeddability, a notion
with which we are familiar, for existence of a generalized free verbal product, which
we have chosen not to define.

The sort of ,,useful” criterion that one would hope for is formulated in terms
of the groups 4, B, H defining the amalgam, and groups obtainable from them
by the operations of commutation (that is forming from two groups X, Y the com-
mutator group [X, Y]), intersection (forming X Y), and multiplication (forming
XY, under the assumption that this is again a subgroup — for which it suffices
that one of X and Y is normal in what they generate). The groups so obtained,
together with the trivial group E, form what we call the CIM-algebra of the amal-
gam, and a CIM-criterion will consist of a set of equations between elements of
the CIM-algebra.

The CIM-algebra of the amalgam 2 =am(A4, B; H) is in general an incomplete
algebra, because the commutator and the product of 4 and B are not defined in
it (except in the trivial case of an ,,improper” amalgam, when H coincides with
A or B).

To illustrate CIM-criteria, we remark that the necessary and sufficient condition
for the existence of the generalized direct product of the amalgam am(A4, B; H) is

[4, H] =B, H]=E.

This is also sufficient, but not necessary, for the embeddability of the amalgam
in a group of the variety ¥ provided that both A and B belong to ¥. Again it was
shown in [4] that the CIM-conditions

[4, H, A]= B, H, B]=[A, [B,BI(\H]=[B, [4, A)N H]=E

are necessary but not sufficient for the existence of a generalized second nilpotent
product of the amalgam.

To prove the non-existence of necessary and sufficient CIM-criteria for the
existence of generalized free n-th nilpotent (or n-th soluble) products for n=2,
we construct two amalgams of n-th nilpotent (or n-th soluble) groups such that

1) See [4, 4.7].
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the CIM-algebras of the two amalgams are isomorphic, and one of the amalgams
is, while the other is not, embeddable in an n-th nilpotent (or n-th soluble) group:
then both amalgams satisfy precisely the same CIM-conditions, and no set of CIM-
conditions can be both necessary and sufficient for embeddability in an n-th
nilpotent (or n-th soluble) group; application of Theorem 1. 1 then evidently comp-
letes the argument.

In fact by choosing the constituent groups 2nd nilpotent (or metabelian) and
by ensuring that the embeddable amalgam is embeddable in a 2nd nilpotent (or
metabelian) group, whereas the non-embeddable amalgam is not embeddable in
any nilpotent (or soluble) group, whatever the nilpotency class (or solubility length),
we deal simultaneously with all values of n=2.

2. Soluble products

We begin with the case of soluble groups because the construction and proof
are simpler than for nilpotent groups. We shall arrange our amalgam A =am (A4, B; H)
so that

2.1 (A, A=A, H1=I8 Bl=IB, Rl=R#E
and
[H, H]=E.

It follows that the CIM-algebra of A has only the four elements A4, B, H, E, with
the composition tables

1| ABHE || ABHE | - | ABHE
Al BEN Al dBEE | & 0 2
B HHE| B| HBHE | B B BB
H|\vwee |\H | weHE ||H| ABHH
]
FE|EEEe |\ E| EEEE|E| aBHE

Blank spaces mean ,,undefined”.

It follows from (2. 1) that the groups A4 and B are metabelian. For our construc-
tion we choose them as isomorphic groups of order 56, namely as (splitting) ex-
tensions of an elementary abelian group H of order 8 by an automorphism group
of order 7. This is not yet sufficient to specify the amalgam, but it is sufficient to
ensure the validity of (2. 1), and so the uniqueness (modulo isomorphism) of the
CIM-algebras of the amalgams we construct.

Specifically, we put

H=gp(hy, hy, hs;hi=Th, h]l=1; i,j=1,2,3),
and define the automorphisms «, f of H by
W=h,, =hy, hs=hh,,
M =h, B=ks B =hhs.

It is not difficult to verify that both « and f have order 7, and that they jointly gene-
rate the group of all automorphisms of H, which is the well-known simple group
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of order 168. Now we define groups A, B,, and B, by adjoining to H elements a,
b,, and b,, respectively, which are to be of order 7 and to induce in H the auto-
morphisms =z, z, and [, respectively: thus

A=gp(H,a;a’=1,h=h,, hs=h3, h5=h,h,);
By=gp(H, by: b =1, =hy, Wy =hy, K =hyhy);
By=gp(H, by; b]=1. hi* =hy, W3 =hy, h§>=h,hy).
From these groups we put together two amalgams
A, =am(4, B,; H),
A, =am(A, B,; H).
As already remarked, they have the same CIM-algebra. We now show:

Lemma 2. 2. The amalgam U, is embeddable in a metabelian group, whereas
A, is not embeddable in any soluble group.

Proor. We denote by C the cyclic group of order 7 generated by an element
¢, and put
Gl =AX

This clearly contains 4 as a subgroup, and if we put b, =aXc, then b,, like q, in-
duces the automorphism = on H, and b]=1. The subgroup of G, generated by
H and b, is, therefore, isomorphic to B, , and if we identify it with B, , then A\ B,=H.
Thus G, embeds the amalgam ,; and G, is clearly metabelian.

On the other hand let G, be a group in which the amalgam U, is embedded,
and assume, as may be done without loss of generality, that 2, generates G,. Now
His normal in 4 and in B,, and so H is normal also in G,. Thus G, induces a group
of automorphisms in H, and this is isomorphic to G,/C(H), where C(H) denotes
the centralizer of H in G,; this group of automorphisms contains in particular
o and f, the automorphisms induced by @ and b,, and as these generate the group
of all automorphisms of /H, we see that G,/C(H) is isomorphic to this, the simple
group of order 168. It follows that G, is not soluble, and the proof of the lemma
is complete.

Combining this lemma with what has been said before, we have thus proved:

Theorem 2. 3. There is no CIM-criterion that is both necessary and sufficient
for the existence of a generalized free soluble product (of arbitrary solubility length
n=2) of an amalgam of two groups.

3. Adjunction of a root to a nilpotent group

The case of nilpotent products requires a more involved construction, and
we prepare the ground by exhibiting an example that has arisen in a different con-
text, but will here be put to new use.

The question that the example was designed to answer is this: Let & be an
element of a nilpotent group B and let p be a positive integer; is it possible to embed
B in a nilpotent group G in which the equation x? =/ has a solution? Under various
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restrictions on B the answer was known to be positive, and it was natural to con-
jecture that it is positive in all cases. This is, however, not true, as the following
example will show. Let p be a prime and put

B=gp(bl,b2’b_‘§s vesg3C19C245Cay 0nuy h; b{: ], br+1=bi!
szl, Cf_'_l:Cf, [bi! C'J.']=[c,', h] - l, [bis h]=C'- (f,j= 1, 2, 3, )).

This is a splitting extension of the direct square of the quasi-cyclic group C,. by
an infinite cyclic group whose generator induces the automorphism that multiplies
each element of one C,.. by the corresponding element of the other (under a fixed
isomorphism of the two), and fixes every element of the other C,.. Using the no-
menclature of MORAN [1], B is the second nilpotent product of an infinite cyclic
group and C,..

We now prove that no p-th root of & can be nilpotently adjoined to B, and
in fact we prove a little more:?)

Theorem 3. 1. Let G be a group that contains B and an element a such that a® = h.
Then a¢(,(G), where

E={(0)=L(0)=...=({,(0)={,(0)=...

is the transfinite upper central series of G; thus in particular G #(,(G), and a fortiori
G is not nilpotent.

The proof occupies the remainder of this section; we first establish a lemma.
The notation is as usual (and some of it has already been used above),

X =y=txy=x[x, 3], [x, », 21 =[x 3], =];
6=71(6)=7,(6)=7,(G)=...

is the lower central series of G.

and

Lemma 3. 2. Let m =2 be an integer and let K be a group generated by two ele-
ments a, b that satisfy (inter alia) the relations

[a®, b, a"]=la™, b, b]=1.
Then for all i=3

(i) if g€y:K), then g™€7y,..(K), or, differently put, the exponent of
71(K)/7i41(K) divides m?*;

(i1) [[a, )™, a™~*]=[la, b]™*, b™~*]=1 (mod y;(K));

(iii) [a™~%, b] =[a, b™' "] = [a, b]™* (mod y,(K)).
Proor. We use repeatedly the simple remark that

(3.3) if [x,y1€y(K) then [x7, x*] =[x, ¥]" (mod y;4,(K));

this holds for elements x, y of an arbitrary group K and for arbitrary integers r, s.

2) We owe the knowledge that G is not {.(G) to DR. MicHAEL F. NEwMAN; we had
.originally only proved that G is not nilpotent, that is to say, G {.(G) for all finite n.
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The proof of the lemma proceeds by induction. As y;(K) is generated modulo
74(K) by [a, b, a] and [a, b, b], and as, still modulo y,(K),

[a, b, a]™ =[[a, b]", a"] =[a™, b, a"] =1,
[a, b, B]"=[a, b]™, b]=[a", b, b] =1,
we see that y,(K)/y,(K) has exponent dividing m?; this proves (i) for i=3. Next,
trivially,
[a, b, al=[a, b,b]=1 (mod y;(K))

and
[a™, b] = [a, b"] = [a, b]™ (mod y;(K)),

establishing (i) and (iii) for i=3.

Now assume (i) — (iii) true for 3=i=n. If g€y,(K) then, by the induction
hypothesis, g™ €7,:,(K) and if, moreover, k is an arbitrary element of K, then
by (3.3)

[, k"™ =[g™, k]=1 (mod y,.,(K)).

As 7,+1(K) is generated modulo y,.,(K) by all such [g, k], with g ranging over
7.(K) and k over K, this establishes (i) for i=n+1.
Next, by (ii) for i=n,

[la, 5], @™ *]=[la, )™, ™" *]=1 (mod 7,(X));
using (i) for i=n and (3. 3), we have in turn
[, B}, & PP m[a, 5}, 0 *]*=1 (mod y,+1(X));
[[a, B]™ %, @™ *]=[[a, b]™ %, 5™ *]=1 (mod 7,+(K)),

and this proves (ii) for i=n+1.

Finally, by (iii) for i=n,

[@™"~*, b] = [a, b]™"* (mod y,(K)).
We re-write this in the form
(P T =™ g, DI e,

where g€7,(K), and thus is central modulo y,.,(K). Also " * and [a, b]™" *
commute with each other modulo y,,,(K), by (ii) for i=n+ 1, because n=3 and
so0 2n—5=n—2. Hence

(@)= =@ [a, B g (mod 7,4, (K)).
But g™ =1 (mod Ta+1(K)) by (i), and we can re-write the congruence in the form
[, b] =[a, b]™"™* (mod 7, ,(K)),

which is the first half of (iii) for i=n+ 1; the other half follows similarly, complet-
ing the proof of the lemma.

We turn to the proof of Theorem 3. 1. Assume it false, that is assume a€{,(G);
then there is a finite n such that

ac,(G).
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Put b=b,,_5, so that the order of b is p?"~3, and let K be the subgroup of G gene-
rated by @ and b. Then a<{,(K); and K is generated by {,(K) and b; but K/{,(K)
cannot be a non-trivial cyclic group, hence also b€, (K), and K={,(K) is nilpotent
of class n. Hence 7,.,(K)=E. We now apply Lemma 3.2 with m=p and i=n+1.
Then the congruences are equations, and as b**" *=1, we have

[e7?, bl =1.
But a?=h, and so _
1=[a?"", b] = [AP*"~*, b] = [h, B)P*"*=c; P *=c7! £ 1.

This contradiction proves the theorem.

We remark that the construction does not use that p was assumed to be a prime,
and it can be varied by replacing the C,. by a direct product of different such
quasi-cyclic groups. Also the theorem is, in a sense, best possible, because one
can construct a group G containing B and a p-th root a of /4 such that G ={,, . ,(G).
However, we do not require this fact and omit the proof.

4. Nilpotent products
We shall arrange our amalgam A =am(A4, B; H) so that
4.1) [4, A]=E, B, B]=|B, H|=B'=BH, |, B]=E,

and so that A, B, H, B’, E are distinct. It follows that the CIM-algebra of U has
the composition tables

(]| ABHBE || ABHBE || - | ABHBE
S 'REEN WS EYER T A Ea A
" B BBEE| B| HBHPBE | B BB B B
H|EBREEE|H| HHHBE |H| ABHHH
B|EEEEE|B|BFBBBE|(|B| ABHB B
el eresE|\E\ EEEEE||E| BREP E

Blank spaces again indicate undefined products.

No CIM-algebra of fewer than five elements would serve our purpose; for
in order to make it the CIM-algebra of an amalgam that is embeddable in a 2nd
nilpotent group, both 4 and B must be 2nd nilpotent; but in order to make it the
CIM-algebra of another amalgam that is not embeddable in any nilpotent group,
we must ensure that not both 4 and B contain H in the centre, for otherwise the
generalized direct product would always provide an embedding in a nilpotent group.
It follows that at least one of 4 and B must be non-abelian, and that the derived
group of at least one of 4 and B must not contain A and so must be distinct from
H; and as the amalgam clearly must be proper (that is to say, 4 = H # B), the CIM-
algebra contains 5 elements at least.
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It follows from (4. 1) that A4 is abelian and that B is 2nd nilpotent. For our
construction we choose A as a direct product of two infinite cycles and a quasi-
-cyclic group:

A=gp(a, k,c,,¢c;,¢s,...; [0, kl=[a,c]=[k,c]=1,
Cf= l., Ci'p,',l =Ci (i=1, 2, 3., --.)).

For B we take the direct product of an infinite cycle and the group denoted by
B in Theorem 3. 1; thus

B:gp(bubz,bse s €15 €5 €35 vnny h: h’; bf= l, br+1:bi
ci=1,cly=ci, [bi, ej]=b;, K] =[c;, h]=[c;, I']=

=k, A]=1, [b;, Al=¢; (,1=1,2,3,..))
We put
H=gp(c,,€2,C3; s B, b'; e}=1,clpq=¢;;

[e;, ) =[ci, W1=[h, K]=1 (i=1,2,3,...);

the notation indicates how H is embedded as a subgroup of B, and partly how it
is embedded in 4. To complete the specification, we first identify & with k and 4’
with a”, thus making an amalgam A, , say; and secondly we identify & with a” and #’
with k, thus making an amalgam ,. Both these amalgams satisfy (4. 1); we omit
the (easy) verification.

Now ¥, is embeddable in a 2nd nilpotent group, namely in the generalized
direct product of B and the cyclic group generated by a, amalgamating the central
element /#° of B with a”. On the other hand, if 2, is embedded in a group G, then
G is not nilpotent, and even differs from {,(G) by Theorem 3. 1, as 2€ B has a p-th
root @ in A and thus in G. Hence we obtain the theorem announced in the intro-
duction:

Theorem 4. 2. There is no CIM-criterion that is both necessary and sufficient
Jor the existence of a generalized free nilpotent product (of arbitrary nilpatency class
n=2) of an amalgam of two groups.
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