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The estimation of the mean value of a matrix-valued
discrete stationary stochastic process

By T. BALOGH (Debrecen)

1. Let (Q, &, P) be a probability field. Consider the totality L, () of the quad-
ratic functional matrices of order r, defined on the set €, measurable with respect
the probability measure P and having square integrable elements. On L, (£2), which
is a linear space with respect to ordinary matrix addition and left multiplication
by rXr matrices of constant elements, we define the inner product as follows:

£, 9= f@g"@dP@) gLy ().

For every pair f, g the inner product (f, g) is an r X r matrix with constant elements.
By the norm of f¢ L,(Q) we understand the square root of the positive semide-
finite Hermitian matrix (f, f) and we denote it by |f||. Accordingly, the convergence
in the mean of the matrix sequence f,€L,(Q)(n=1,2,...) to fcL,(Q2) means
that the relation |[f,—f|—=(0),, n—-< is fulfilled, and this holds if and only if
Sp|f,—f| =0 (n—-==) ([3], Theorem 7). In § 3. of [1] we have shown that L,(Q)
is, in the terminology of [3], § 2., a quasi Hilbert space.

Let us now consider a one parametric family X,(w) (1€ 7T, where T is some
index set) of elements of L,(£2), This will be called a stochastic process. By the
mean value of the process we mean the integral

EX,=m,= | X,(@)dP(w)

and by its covariance functional matrix the functional matrix
X,—m,, X,—m,)=R(, s), t,s€T

of two variables. If T is an abelian group, then we say the process X,(w) to be sta-
tionary in the wide sense, if for any t€7T,s€T, heT,

R(t+h,s+h)=R(t,5)=R(t—5)
holds.
If T is the set of the integers, then the process will be called discrete. By The-
orem 7. of [1] the covariance functional matrix of a discrete stationary stochastic

process can be represented in the form
n

R()=(X,op, X)= [eMdF() k=0, +1, £2,...),

-R

D5
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where F(x) is a positive semidefinite Hermitian functional matrix of order r. This
matrix will be called the spectral distribution functional matrix of the process.

If the elements of F(x) are absolutely continuous functions, then we call the
spectrum of the process absolutely continuous. In this case there exists a positive
s2midefinite (L) integrable Hermitian functional matrix f(x) ([1], Theorem 9), such
that

X

F(x):fl,? J‘f(r)dt and f(x):Z:rtg;F(x]. a.e.

—_—

f(x) is the spectral density matrix of the process.

2. In the present paper we consider the special case of matrix valued discrete
stationary processes, in which the mean value of the process has the form

m, = Mei*o,

where A, is a known numerical value, and M a regular matrix of order r with cons-
tant elements. We propose as our task to give an estimate of M, if the process is
being observed in the time points 1= —n, —n+1,...,n—1,n. We seek for M
an unbiased linear estimate

n

M= > C,X,,

v==n

for which Spi M —Mj? is minimal. Thus our problem is to determine the rxr

matrices C, of constant elements, occurring in the representation of M,,,. The
first part of our paper is devoted to the solution of this problem. The formula (5)
gives an explicit expression for the matrices C,. Theorems 1,2 and 5 tell us the

conditions under which Mmin 1s a consistent estimate of M.

Making use of the results of [2], we determine the error of the most efficient
linear unbiased estimate of M. More detailed information about this formula for
errors is given by Theorems 6 and 7. In Theorem 8 we deal with the estimate M,
of M, which is also linear and unbiased, but not efficient. We prove that the quo-
tient of the errors of M; and M, is assymptotically equal, if n - oo,

Theorems 3 and 4 concern the more general case, when

et dm(2),

-y

m,=M

where m(2) is a known complex-valued function of bounded variation.

We remark that the results of the present paper are generalizations of the
results in 11.1—11. 3 of the book [4].

The concepts and notations from matrix theory, of which we make use in
this paper, are summarized in [2], 2.

3. Let X,() be a discrete stationary stochastic process. Suppose that the spec-
trum of the process is absolutely continuous and let the positive definite Hermitian
functional matrix f(x) be the spectral density. Let furthermore

m, = Me''%o,
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where Z, is a known numerical value, and M a regular matrix of order r with cons-
tant elements. Suppose that we have observed the process in the time points
t=—n, —n+1,...,n—1,n and let the observed values be given by the matrices
X_,, X_h+1s .- X,—1, X,. We propose to give an estimate of M, i.e. to find a
functional matrix

M=lﬁ(x-,, X—“+|n sees xu—l‘ Xn),

for which

() Sp |M— M|

is minimal. We restrict ourselves to linear unbiased estimations
M= 3 CX,

where the quantities C, are the matrices to be determined, subject to the condi-
tion (1) and also to the following £M =M.
The condition that M should be unbiased means that the relation

EM= > C,EX,= 3 C,Me*o=M

v=-=n v=-=n

must necessarily hold, and thus in view of the regularity of the condition

(2 2 Cpeltle=E,

v=-—n
must be fulfilled.
It is also possible to formulate the problem in a different way. Indeed,

IM—M|2=(M—-M,M—M)= (k : C (X, — Mefk4o), !;_;: C(X,— Meiuo)) -

= 3 3 CR(k-I)Cf=CRC*,
k=<nl=<n

where
P SR A R 5

and R is a covariance matrix of order (2n+1)r.
Let us introduce the notation

A* =(e"‘"i"E . e—in-1)io g e"""°E)
r F3 visy rs.

This enables us to write condition (2) in the form

3) CA=E.
Thus our task is to determine the matrix C which minimizes
Sp CRC*

under the condition (3). We can solve this task as follows:
An arbitrary matrix C satisfying condition (3) can be written in the form
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C=KA*R~!'4+D, where K=(A*R"'A)~! and DA =(0),. The matrix R occurr-
ing here, and thus also the matrix K, has an inverse by Theorem 1 in [1].
Then
CRC*=(KA*R~' + D)R(KA*R-!' + D)* =

=KA*R-'AK + DAK + K(DA)* + DRD*.

Since DAK =K (DA)* =(0), and DRD* is a positive definite matrix, Sp CRC*
will be minimal for D =(0),. In this case the value of the minimum is

4 Sp Q,=Sp (A*R-'A)~*
and we have for the minimizing matrix
(5) C=(A*R-14)"1A*R~L.

_In accordance with the terminology generally accepted, we say that the sequence
M, is a strongly consistent sequence of estinates if

lim |M, — M||2 =(0),.
It is our purpose to answer the question, whether there exists a sequence consistent
estimates in the above case?

If we take into account the representation given in [1] (formula (8)) of the
covariance functional matrix, then we get

||N'I—M1|2=kj 3 CR(k—I)Cf =

==nl==n

i=—n =-—n

L]( 5.0l 5 o
2n k

= P,(2)f(x)P;(z)dx (z=¢€l%),

where P,(z = > C,z*. By theorem 4 in [2] this implies that
k=-—n

Sp Qn+ 1 = Sp Qn
i. e. the limit lim Sp Q, exits. Thus the question is, when will this limit be equal

n—bow

to zero?

Theorem 1. For a bounded functional matrix f(x) there exists a consistent es-

timate, and
Sp Q,=0(n"").

This theorem follows from Theorem 6 in [2], the conditions of that theorem
being satisfied by f(x).
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It is easy to see that there exists a consistent estimate also in a more general
case. Indeed, we have the following

Theorem 2. If the spectrum of the process is absolutely continuous, then there
exists a consistent estimate.

Proor. Consider the estimate

- 1
g 2n+ 12

Z X,‘e Y,

1. e. let C“zzn-g-]e_moE" (k=—-n, —n+1,...,n). This is an unbiased

estimate of M, for

o Skl : ~ikdgpikio —
EM"_2n+lk=Z_,.Me ekio =M.,
On the other hand
.]M — M| =L I | Z ei(x= Aok 2f(x)dx—
= 2n (2n+- 1)2 kZ=n

n

it . ‘(sin(nﬂ,)(x—zo))zf(x)dx,

21 @n+ 1) )\ sini(x—4g)
hence 7
o ot ) 1 . sin (n+1)(x—40) \°

Sp f(x) is (L) integrable, and so, by the Riemann-Lebesgue lemma, its Fourier

coefficients tend to zero. If the n-th Fejér mean of the Fourier series of Sp f(x)

. (40) o)
2n+1

is denoted by g,(x), then the right hand side of (6) equals As is known,

lim a,=0 implies

LT

T (n+1)ay+na,+ ...+ 2a,_,+a,
n—soe n+1

=] ¥

u( 0)
2n+

n—co,

Let us now consider the more general case, when

hence 0 (n—-<<) and thus the right hand side of (6) converges to zero, if

[ e'"dm(x),

m,=M
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where m(x) is a complex-valued function of bounded variation. In this case the
spectral distribution functional matrix is not necessarily absolutely continuous.
Then we have to minimize

(M Sp [|M—M]|?=Sp ‘.,_Ln J. P (2)P,(2)dF(x) (z=e¥)

with the auxiliary condition

®) | P.@dm)=E, (z=en).

For this case we prove the following

Theorem 3.

©) lim Min Sp |[M —M)|? =lim SpQ, = 2' z H;',

n=sco n=seo

where H ;= |dm—(x)|2 is the so called Hellinger integral, and F;;(x) (j=1,2,...,r)
d dF ;;(x) : A A
is the j-th diagonal element of the matrix F(x)

Proor. Let
P11(2) (0)
P,(2)= Pzz(z).

© Pr(2)
and suppose that

‘ P,(z)dm(x)=E, (z=e"*).

In this case

(10) SpQ, “”Mln = Z' |pj;()PdF;;(x)=

= 7 MINn— J‘ lp_pj(‘)lzdFjj(\) (: =€"‘)
In [5], p. 569 it is proved that

lim Mm jiP,,(~)|2dF}f( )= l Ij;jfj(\?cl)-

N=sco
e
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n

if only [pjj(z)dm(x)zl. This, together with (10), already implies the assertion

.4
of our theorem.
A consideration of (9) immediately yields the following

Theorem 4. If the Hellinger integrals H; (j=(1,2, ..., r) are all divergent, then

the estimate M = > CX, satisfying condition (8) is consistent.

V= =n

In Theorems 1 and 2 the function m(x) is constant, for x=/, and also for
x =2, while at x=/, it has a jump of magnitude one. Clearly, in this case the
Hellinger integral H; is divergent or convergent depending on whether the func-
tion F;;(x) is continuous or not at the point x =4,. This fact is expressed by the
following

Theorem S. If m,=Mei'* and the elements F;;(x) (j=1,2,...,r) in the main
diagonal of the spectral distribution functional matrix are continuous at the point
X =g, then there exists a consistent estimate of M.

Let us now return to the case when m,=Me"* and the spectrum is absolu-
tely continuous. By Theorem 2 there exists a consistent estimate. Of course, our
aim is to find the ,best one” of these consistent estimates. Let the matrices
X0, X4, ..., X, stand for the observations. If the “best” consistent estimate of M
is denoted by M,;,., i. . if M,,;, is the linear combination of the matrices X,, X;, ...
...X,, for which SpIM,,..—MI? is minimal, then in view of (5) one can write

M,..=(A*R-1A)~'A*R-'X,

where X=(X,, X,, ..., X,). Moreover, the mean square deviation of the error
will be

Sp |Muin —M]|2= Sp (A*R-1A)-1,

Although these are explicit expressions, the effective determination of the
values required is rather cumbersome, since it involves the uneasy task of determ-
ining the inverse of the matrix R, possibly of high order. Therefore it is desirable
to give approximations at least for the most frequently occuring cases.

In order to be able to do this, first we remark that the polynomial matrix mini-
mizing the expression Sp|/M,,;, —MiI? under the condition P,(¢'*)=E,, has, by
Theorem 3 from [2], the form

P, (2) =S 1(eito, ¢i0)S, (e, 2),
and the minimum itself is equal to Sp S, '(e'%, e'“0). On the basis of this we can
prove the following

Theorem 6. If for the positive definite (L) integrable Hermitian functional mat-
rix f(x) the relation

(11) f(x)=(AX)A*(x))-! (z=€")
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holds, where A(z) is a trigonometrical polynomial matrix of degree p, then

M. —MiIl2
(12) ]im HSP .1Mmm M" = l.

nee SpA(4o)

Proor. If f(x) has the form (11), then the polynomial matrix occuring in the
representation of S;(x, x) is

G+ ,(2)=2"A(2) (m=0,1,2,..),

since
; 3 ((0),, for k=l
o I:*A(z)(A(z)A* (2))-'A*(2)Z'dx =1
— y =g} E for k=l

Thus for n=p we have

Sy €4 = 3 §(PiE) + 3 M)A (€)=

v=p+
= 3 ()91 () +(1—p+ DI Go).

Since Sp|M,;, —M]>=Sp S;1(ei%, ei) and Sp 3 b,(e*) ¥ (%) is bounded,
v=0 .
(12) holds.

Theorem 7. If f(x) is a positive definite Hermitian continuous functional matrix,
then
“nlrlsp"hdmh-hdhz
nosee Sp£(20)
ProoF. Since f(x) is a positive definite Hermitian continuous functional matrix,

there exist positive definite Hermitian trigonometrical polynomial matrices P, (e'*)
and P,(e™) so that for any row vector z=(z,, z,, ..., z,) we have

=].

(13) ZP 1 (e™¥)z* = zf(x)z* = zP5 ! (¢'*) z*
and the inequalities

0<z(f(x)—P7(e'))z* < Z_i 3
(14)

0<2z(P5 () — f(x))z* < %
hold for any &=0. By the generalization [6] of the well known theorem of FEJER,
for any polynomial matrix with the above property there is an A(e™)= > A.e™**
k>0

such that
P,(e*)=A,(e*)Ai(e’*) and P,(e*)=A,(e'*)A3(e'™).
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Thus by Theorem 6
paletie, PT1 ()= Sp BT (et0)

(15)

(e, P31 (€)= — Sp P3* (e),

1
n
where p, (2, f)=Min Sp Zer .[ P,(z)f(x)P;(z)dx under the condition P,(x)=E,.
The inequalities (14) imply

0<Spf(4)—Sp Pyt (eih) < %

0= Sp P31 (e%) ~ (i) <

and
0<Sp Py !(el*)— Sp P71 (eth)<e.

From these inequalities, and from (13), (15) and Theorem 5 in [2] the relation

3 1 ”
Ha(e, £) = Sp £(Zo).

follows.

Theorem 8. If f(x) is a positive definite Hermitian continuous functional matrix
and

- 1 B
M, = > e=ivio
L= 0+ 1,5¢ X
1
[ —— ~ivdg po—
40 AE 85 =1 E (v=0,1,...,n), then

. nSp|M,—M|> _

Proor. Consider the equality

=
2

n
Zei\’(x— }-ullp Sp f(_r)d_\- =

Sp M, —M|?2 s j

T m+1)22n ) <
w2 a1 oS
| | smT(.\‘ —Ag)
= m E J‘ Sp r(.\') dx.

" ;
5 sin —2-(.\'— /o)
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Now, if g,(x) denotes the n-th Cesaro mean of the Fourier series of Sp f(x), then

V- 2_6»(}'0)
Sp ¥, — M2 = Z220),

By our condition Sp f(x) is continuous, and so by the limit theorem of FEJER for
the Cesaro means of the Fourier series

lim a,(40) = Sp f(4,)
hence the theorem follows.
Theorems 7 and 8 jointly imply the following

Theorem 9. If f(x) is a positive definite Hermitian continuous functional matrix,
then the unbiased and consistent estimate M of M is assymptotically equal to the
estimate M, i.e.

. . 1
Sp My, —M||? = Sp | M, — M]|? = ~ 5P E(4o).
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