Unitary functions (mod r), II.

By ECKFORD COHEN (Knoxville, Tenn.)

1. Introduction. This paper constitutes the second part of an investigation
of the class of unitary functions of n(mod r), n and r integers, r =0 [3]. The notation,
terminology, and definitions of Part 7 will be assumed in this paper. Reference
numbers marked with an asterisk refer to the bibliography of [3].

A basic aspect of / was the development of an arithmetical inversion theory
of the class U, of unitary functions (mod r), corresponding to that [3*] of the class
E, of even functions (mod r). It is noted that U, E,. Another important subclass
of E, is the set P, of primitive functions (mod r), which satisfy the property f(n, r) =
=f(7(n, r), r); here y(r) is the maximal square-free divisor of r and y(n, r) = y((n, r)).
In [1,§ 7] it was shown that the functions f(n, r) of P, are characterized by reper-
sentations of the form,

(1.1) fa.n= 3 g(d. ").
dlyir) d
(md)=1

A complete inversion theory for such representations of functions of P, was de-
veloped in [3*,§2]. For a group-theoretical characterization of P,, see section 7
of the present paper.

In this paper it will be shown that all functions of U, are representable in a
form (4. 7) analogous to that of (1. 1). The corresponding inversion theory is car-
ried out in section 4. It is of interest to observe that the statement of the main result
(Theorem 4. 1) is quite simple in comparison with the corresponding result in
P, [3*, Theorem 2. 3].

In section 5 the Inversion Theorem is applied to obtain asimple formula
for the combinatorial function @, (n, r), defined as follows: Let S denote an arbit-

rary set of positive integers: then w,(n, r) denotes the set of all @a(mod r) such that
(a,r).=1 and (n—a, r). < S. In the special case S=1, we have the result,

(1.2) 0*(n, r)=w,(n, )= 23 ;1*(d)q*(%).
dr

(nd)e=1

The function 0* (n, r) is the unitary analogue of Nagell's totient function 6(n, r),
and the representation (1. 2) of 0*(m, r) is analogous to that deduced for 0(n,r)
in [1, (7. 6)]. The formula obtained for wg(n, r) for an arbitrary set S will be found
in Theorem 5. 1. This result is an analogue of a generalization [2, Theorem 13]
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of the result concerning #(n, r) mentioned above (see Remark 5. 1.). The proof
of the present paper is, however, quite different and somewhat more direct than
that of [2]. The theorem of section 5 is applied in section 6 to two special cases
of S, the k-free numbers and the k-th powers.

Sections 2 and 3 are devoted to the trigonometric aspects of the class U needed
for the later discussion. In particular, section 3 contains a treatment of the trigono-
metric inversion theory of U, independent of that deveploed in [3, § 5]. It will be
observed that the statement of the Fourier inversion principle in Theorem 3.1
differs somewhat from that of Part /, the new formulation being more convenient
for the present discussion.

For the properties of finite cyclic groups needed in this paper the reader is
referred to REDEI [5, § 90].

2. Preparatory lemmas. In this section we prove some properties of the unitary
analogues of Euler’s totient and of Ramanujan’s sum. We need first a lemma con-
cerning semi-reduced residue systems (mod r), (cf. [4*, § 2]): an integer a is called
unitary (mod r) if (a, r), =1, and the set of unitary elements in a residue system
(mod r) is said to form a semi-reduced residue system (mod r).

Lemma 2.1. Let d %0 =r; any semi-reduced residue system (mod r) can be
partitioned into ¢*(d) semi-reduced residue systems (mod) o.

Proor. We use a group-theoretical argument (cf. [3,§7]). Let C, denote the
additive group of the integers (mod r), or equivalently, any additive cyclic group
of order r. A unitary element of C, is therefore one whose components in the (di-
rect) Sylow summands of C, are all different from the identity. Evidently, there
are ¢*(r) unitary elements of C,. Let C; denote the subgroup of order ¢ of C, and
I’y the factor group C,/C;. The elements of I'; consist of the cosets K, =a + C;,
where @ ranges over the elements of C,, C;,& C,=C,. Under the isomorphism
I'y= C,, there are ¢* (d) unitary elements of I',, K, being unitary when a is unitary
in C,. The unitary elements of C, contained in a unitary coset K, of I'; are pre-
cisely the elements, a + x, where x ranges over the ¢*(J) unitary elements of C;.
This proves the lemma, because a non-unitary coset K, contains no unitary elements
of ' C,.

An immediate corollary is

Remark 2. 1. If d|r, then any semi-reduced residue system (mod r) contains
such a system (mod J).
The following result is analogous to Hélder’s formula for Ramanujan’s sum

[2%.(5)].

Lemma 2. 2.
2.1 c*(n,r)=p* (;)tp*(!), t=(n,r).

Proor. By definition and the fact that ¢*(m, r) is unitary (mod r), we have

c*nr)=cXt, )= J e(x,r).

(xr)e=1
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Hence application of Lemma 2.1 yields

c*(n, r)=(“;§,'=le( , IL) =¢"(r)( 'Z e(x, —:—) =tp‘-‘(r)c*(l, -:—'-),

and (2. 1) results by [3, (2.4)].
Lemma 2.3. If d,|r, d.|lr, then

ol & 9*(d3)
e ()= £ G (2 0).

Proor. By Lemma 2. 1, one obtains, with d,0, =d,0, =r,

xr 1 xr
d — d 2 2
(dl 2) lxdﬂz.;le(dl z) *(5:)(:”;.—: ( 2 )

_9@) 5 ("’d) 7" (01)c*(62.dy)
7*(02) (xdire=1 \d7’ 7*(92)

The result follows by the multiplicativity and positivity of ¢* (r).
The following orthogonality property of c¢*(n,r) is needed for the trigono-
metric inversion theory of § 3.

Lemma 2.4 (cf. [2%,(6)]). If d,|Ir, d;|r, then

z r ro (dy=d,)
@ ze(an)e (G-t

Proor. With d,0, =d,0,=r, m=4,, n=9,, the result contained in [3, (3. 7)]
becomes

o o

I e
vc*(é,,d)c*(dz.d)_\ p*(dy) o
& ¢*(d) _2 0 otherwise.

The relation (2. 3) follows on applying Lemma 2. 3 to ¢*(d,, d).

3. Trigonometric inversion. The fact that e(n, r) is contained in the class V,
of periodic functions (mod r) was implicitly used in the proofs of Lemmas 2.2
and 2. 3. It will be remarked that U,S E,Z V,. The property U, E, was used
in developing the inversion theory of [3]; the alternative treatment of this section
is based rather upon the property, U, S V,.

Lemma 3.1 [4 %, Lemma 2. 1]. The integers of the form dx, d % é =r, x(mod 9),
(x, 0)« =1, constitute a complete residue system (mod r).

Theorem 3. 1. If f(n, r)€ U, then f(n, r) can be represented in the form,
3.1 Sfn,r)= Za(d, r)c*(n, d),
dr
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where for each d|r,

(3.2) x(d, r)=} A5 r) c* (;}, a),

or equivalently,

r 1 ' 2
(3.3) a(m,r)—?“j(?,r)c (ﬂ,d).
Conversely, if «(n, r) is a unitary function (mod r), then x(n, r) has a representation

(3. 3) where f(n,r) is defined by (3. 1).

ProoOF. Suppose that f(n,r)cU,; then f(n,r) possesses a representation
1%, §2]

(3.4 fn,r)= 23 a,(k)e(nk,r),
ki{modr)
where
3.5) a,(n) = 3 > flu,rye(—un,r).
¥ u(modr)

We apply Lemma 3. 1, observing that in this lemma, x may be assumed semiprime
to r, (x, r)« =1, by virtue of Remark 2. 1. It follows then that

a,(n)= = 2 2 f(dx,r)e(—dxn, r)=% 2 fd,r) 5 e(—xn,d)
d*d=r (x,

Faxg=r (x,8)s=1

P

and hence
(3. 6) aW=a> j(f— , r)c*(n, d).
rasr d

Therefore, a,(n)€ U,, so that by a similar argument applied to (3. 4),

ey f_*) nrx )
f(n,r) Eu.fn‘ﬂa'(d e( a7

=Za,(-r—) > e(nx,d) Za,(i)c*(n,d).
ivr \d/xdi=1 i \d

With a(n, r) defined by «(n, r)=a,(r/(n, r)*), it follows by (3. 6) that f(n, r) has
the representation (3. 1) with «(d, r) determined by either (3.2) or (3. 3).

Conversely, let «(n, r) be a function of U, and suppose that f(n, r) is defined
by (3. 1). It therefore follows, for a fixed unitary divisor D of r, that

L * L = ¥ N Ak L - (._r_
52" 5 ,r)c (D,é) 2 a:(a',r)s,;;c (5,d)c D,Er g
Application of Lemma 2.4 yields (3. 2) with d replaced by D, and the theorem
is proved.
We make an application of Theorem 3. 1. Let S denote an arbitrary set of

positive integers, and let pg(n) be the characteristic function of S:o4(r)=1 or 0
according as r€S or r¢ S.

Il
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Corollary 3.1. 1.

1
G.7 os((n, 7)) i ,,2 % (& x r)c*(n, d),
where
(3.8) cs(m,r)= 3 d;@(%) , W= 2 p*d).
d(nr)* d:é;r

Remark 3. 1. cs(1, r)= i3 (r).
PROOF. ¢g((n, r)4) is unitary (mod r); it has a representation,
3.9 es((n, 1)) = :ﬁs(d r)e*(n, d),
where by (3. 3) and [3, (2. 4)]
r d
rﬂts(m,r)+ Z os(d)c* (n, a’)— Z 95(5) 2, - Dy* ('5)

d¥d=r

d
= 2D 2 2s(0) pu* ( ) ol ."*(E)-CS(" r).
Dlinr)e d*é= Dj{(n,r)y E*é=r/D
(d:D*E] IS

Hence ag(d, r)=c5(r/d, r)/r for each unitary divisor d of r, and (3. 7) results from
(3.9).

In case S consists of 1 alone, ¢5(n, r) and u$§(r) reduce to ¢*(n, r) and u*(r),
respectively. In this case, (3. 7) yields a new proof of [3, (6. 4)]. Place £(r) = p,(r).

Corollary 3.1.2 (S=1).

(3.10 (0.0 = L0 3 (LB ) 0,

Proor. Apply Lemma 2.2 to (3.7) with S=1.

4. Arithmetical inversion of primitive type. We need some lemmas. We recall
[3, (2.3)] that
4.1 T TN L

Remark 4.1. If d,|r, d,|r, then (d,,d,),=(d;,d,). (Vacuous sums will be
assumed zero in the following.)

Lemma 4. 1. If r=r, %r, and D|r, then

{# (D) if Diry,

4.2) ALCE o

e=D
(d,ry) =
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Proor. By (4. 1)
4.3) P4 u*(e)— Z' 1 (e)e((8, n)) u*(e) Z u*(d)

o*e=D *e=
(dr))=1

=2und 2 H*(é’)— #*(d) 2 1),

dr
aD i 5*¢=‘d—

and (4. 3) follows on a second application of (4. 1).
Next we note the case n=0 of [3, (2. 3)]:

(4.4) .:2 ¢t (d)=r.
Lemma 4.2, If r=r,; %r,, Dir, then

rau*(D) if D,
* —
(4. 5) 6%' p*(d)c (d D) {0 otherwise.

Proor. Denote the left of (4.5) by . Applying [3, (2.4)] and rearranging,
one obtains by (4. 4),

S= 2 @ 3 g d=r, 3 w@=r, 3 ue),

*¢= D
6!‘2 di‘— dr; (dr1}=l

and the lemma results by (4. 2).

The following lemma is crucial in passing from the trigonometric represen-
tations of functions of U, to the arithmetical representations of the type under
consideration.

Lemma 4.3. For all r,
(4.6) c*mn= 3 dp*(dw*(';‘ )
(n,d‘;:ﬂ
Remark 4.2. By [3, (2.5)], (u*(r))*=1 for all r.

Proor. We apply the unitary analogue [3, Lemma 2. 1] of the M&bius inversion
formula to (3. 10) to obtain

c*(n, r)p*(r) o B
o= Zra O (d)'

The lemma follows by Remark 4. 2 and the multiplicative properties of ¢*(r) and
u* ().

Remark 4. 3. The property (4. 6) of ¢* (n, r) contrasts sharply with the corres-
ponding property [1, (7. 2)] of Ramanujan’s sum c(n, r), the latter being valid only
for square-free values of r. It is the univarsality of the relation (4. 6) which leads
to the following arithmetical inversion theorem for the functions of U,.
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Theorem 4. 1. Every function f(n,r) of U, has a representation,

@7 foun= 3 h(d, d)

(n, ‘ﬂ:u =1
where h(ry,r,) is determined by

4.8) h(ry,ra)=p (rl)f" (— f).u (d), r=ry%r.

Conversely, if h(ry, r,) is an arbitrary function defined for relatively prime arguments
ry, ray, then h(ry, ry) has a representation (4. 8), where f(n, r) is a function of U, de-
fiined by (4. 7).

PRrOOF. Let f(n, r) be a function of U,. Then f(n, r) has a representation deter-
mined by (3. 1) and (3. 2). Applyimg Lemma 4. 3 to (3. 1) one obtains

fonn=3adn eu"(€)¢"(§)= 3 ewr(e) 3 a(oe, g ().

(me)e=1 (n, e}.-: "”
(d=d*e)

Thus f(n, r) has a representation (4. 7) with
h(ry, '2)=’1!i*("1)“2 a(dry, r)gp=(d), r=r; *¥r,.
r2

Substituting from (3. 2), it follows then that

h("n"z)=ﬂx’,(:l)%/’(; )d%rr (d)f*( )s r=ry%¥r,.

Application of Lemma 4. 2 yields (4. 8) and the first half of the theorem is proved.

Let A(r,,r,) be a function ot two positive, integral variables r,, r, such that
(ry,ry)=1. Let f(n,r) be a function of U, defined by (4. 7). Denoting the right
member of (4. 8) by T, we have for r=r, %r,, by Remarks 4. 1 and 4. 2,

. = % 5 Tlaw h "
w ()T ‘%u (d) Dﬁ, h (D,D) I1}_‘:!1(19,‘0) d%: u*(d).
(32) = (Fp).=1

The summation conditions imply that (D, r,)=1 so that

y
*(r)T= > h| D, = > u*(d).
()1
Lemma 4. 1 is applicable to the inner sum with D and r,; interchanged; in particular,
since D|r,, the sum vanishes unless D =r;, in which case it has the value u*(ry).
That is, u*(ry)T=u*(r)h(ry,ry), and T=h(ry, r,), completing the proof of the
theorem.
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5. A combinatorial problem. In this section, we evaluate the function wg(n, r)
defined in the Introduction. First we prove two lemmas.

Lemma 5.1. If ry %r, =r and S is an arbitrary set of integers, then

(5.1) 2> w*(d)eg(d, r)y=ry us(r,).

d*d=r,

Proor. This result follows immediately on applying the inversion theorem
of [3, § 4] to the function c¢5(n, r) as defined by (3. 8).

Lemma 5.2. If k and r, are unitary divisors of r,r=r, %r,, then

r L k : :
(5.2) > u*(d)c*(?z" k) et 1 (;) if ik,
= 0 .f:f 'y H-k.

ProoF. Let the left of (5.2) be denoted X. Using the representation (4. 6) of
¢*(n, r), one obtains by Remark 4.1,

k k
2=2pw@ 2 Dw(D}q*(ﬁ) = znp*(o)qf*(b—) S wd)
. diry Dk Dk diry
(%’D)= . (?,D) =1
and hence

2= D#*(D)q*(%) 2> uxd).
Dk

dry
(D) =1 ry =
-J,D)_ 1

Lemma 4. 1 is applicable to the inner sum, with the roles of r, and D interchanged;
thus

k
(5.3 2> =u¥(ry) > Du*(D)q-*(E),
Dk

(D) =1
ry D

so that £=0 if ry %k. If r|lk, place k =r,; ¥ R,, R,|r,; it is then evident that the
summation variable D in (5. 3) must be restricted to the single value r,. Hence,
by Remark 4.2, £ =r,¢*(k/ry) if r{|/k. The proof is complete.

The function wg(n, r) can be defined as the number of x, y(mod r) such that

(5.4) n=x+y (modr), (x,r)«=1, (3, r)€S.
This additive formulation is useful in the proof of the main result which follows.

Theorem 5. 1. For an arbitrary set S of positive integers, the function wg(n, r)
is unitary (mod r) and has the following unique representation of the form (4.7):

dr
(md)y=1

(5.5) s n= 3 p;«nq*(g).
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PROOF. By (5. 4), the function wg(n, r) can be expressed in the form,

os(n, )= 3 &((a rs)os((b, r)).

n=a+b(modr)

using the notation of 7 and the functions defined in § 3. By (3. 7) and (3. 10), we
obtain then

os(n,r)=" (')2(“ ,,Ej D (— r) S c*(ady)c(b, dy).

n=a+ bimodr)

Application of the orthogonality property [3, (3. 6)] of ¢*(n, r) yields then
q* d
(5.6) ws(n, r)- (r) Z(M*Ed))) ( : r)c“(n d).

This representation makes it evident that wg(n, r) € U,; moreover, (5. 6) furnishes
the Fourier expansion of (3. 1) of wg(n, r).
By the inversion theorem of §4, wg(n, r) has an arithmetical representation,

(5' 7) ms(n, r) - dzv hs(ds ";_);
(n.d)'.r=1
where
(5.8) hg(ry, "z)=.ﬂ*("1)o|2r' ﬂ’s(‘l‘;“ s ")#*(D), r=ry¥r,.

Substitution from (5. 6) in (5. 8) leads to

hg(ry, ry) = @ (r)”*(rl)Z(#,g;) (_ r) Z y*(D}C*( d)

Dry

By Lemma 3. 2, the inner sum =0 unless r,|d, when it has the value ry¢*(d/ry).
Hence by the multiplicative properties of ¢*(r),

h(ry, r) =020 > u*(d)cs( d,r)
(d=r*d)

and by similar properties of u*(r),
hs(ry, ra) _grr) = ﬂ*(a)cg('_z, ,.)_
Fa &, 0

On the basis of Lemma 5. 1 (with r; and r, interchanged), the inner sum has the
value r,u% (ry), and hence

(5.9 hs(ry, r2) =q@*(r)us(ry), r=ry%r,.

The formula (5. 5) is a consequence of (5. 7) and (5. 9). The uniqueness of the repre-
sentation (5. 9) of hg(r,, r,) results from converse part of the Inversion Theorem.
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Remark 5.1. The function wg(n, r) is the unitary analogue of the function
Og(n, r), defined to be the number of solutions of the congruence in (5. 4) with
the side conditions, (x, r)=1, (y, r) € S. This function was evaluated in [2, Theorem
13] with a result analogous to (5. 5). The following contrasts are to be noted. While
the inversion theorem of § 3 for functions of U, was applied to obtain (5. 5), the
corresponding theorem in P, does not in general lead to the evaluation of Og(n, r)
obtained in [2]. In fact, the latter result is not even in the required form (1. 1). It
should, however, be observed that for exceptional sets S, Og(n, r) admits of an
analysis similar to that used in this section with respect to wg(n, r); in particular,
we mention the treatment of Nagell’s totient (S=1) in [4].

6. A combinatorial problem: special cases. In this section we specialize Theo-
rem 5.1 to special sets S, in particular, to the set L, of k-th powers and the set
0, of k-free integers (k a non-negative integer). In case S= Q,, wg(n, r) and pus(r)
will be denoted Q,(n,r) and ui(r), respectively. In case S=L,, these functions
will be denoted L,(n, r) and 4% (r), respectively. From (3. 8) it follows that
6.1) w)=_2 p@), k=2 u@.

i S
It is easily observed (cf. [3, Lemma 2, 2]) that i (r) and AX(r) are multiplicative.
Hence it suffices to know their values when r=p™, p prime, m=0. In particular,
by (6. 1), pi(1)=4c(1)=1,

=1 Guwh - k=D,

6.2) m"‘(P'")={ L :
& -1 (kfm)

(6:3) ""‘(""')={ 0 (kim) (k=1).

Note from (6. 1) that ui (r) = A5(r) = u* (r). Also it will be observed that L, = Q, =1,
L, =0Q,=2Z, the set of positive integers.
From Theorem 5.1, we have

(6.4 Q= 3 p:w(g),
tn,d‘::=l

(6.5) L(n,p= 3 }J“(a')q*(%).
(n,d‘:.r=1

These results will now be applied to determine solvability criteria for (5. 4) in the
cases S=0,, S=L,.

Theorem 6. 1(a). If k =1, then Q,(n, r)=0 if and only if r is twice an odd integer,
n is odd, and k=1.

(b) If k=1, then L.(n, r)=0 if and only if r is twice an odd integer, n is odd,
and k=1.

PrOOF. In view of the multiplicativity of ui(r), Z&(r), and ¢i(r), it follows
from (6.4) and (6. 5) that Q,(n, r) and L,(n, r) are also multiplicative in r. We
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therefore have only to consider the cases arising when r=p™, n=p', m=0, =0
or m, p prime.
It is easily verfied that if k=1,

p"—=2 if I<m, k=m.

o,(p, p™) = {

Hence O,(p',p")=0=p=2, m=1, I=0, k=1. This suffices to prove Part (a).
Similarly, for k=1,
pm—2 if I<m,kim,

I pmy—
Lpp )_{p"‘—l otherwise.

and therefore L,(p',p")=0=p=2, m=1, =0, k=1. This proves part (b) and
the proof is complete.

Theorem 6. 1 is the unitary analogue of a result relating to Og(n, r) which was
proved in [2, Theorem 14]. These criteria can also be proved in a direct manner.

p"—1 otherwise.

7. Group-theoretical remarks. In [3, §7] it was pointed out that the class
E, could be described equivalently, in terms of group theory, as the set of those
functions defined on the (additive) cyclic group C, of order r, which are invariant
under all automorphisms of C,. An analogous interpretation of U, was also given
in [3].

To obtain a group-theoretical interpretation of P,, we note first that the maxi-
mal subgroups of C, are the subgroups of order r/p, where p ranges over the dis-
tinct prime divisors of r. The intersection of these subgroups is the subgroup
I=C,,, of order r/y(r) contained in C,, namely the Frattini subgroup of
C.(I'y =C,). We define now a function f(«) with definition domain C, to be primi-
tive if it is invariant under the set T, of all permutations of C, which induce auto-
morphisms in the factor group H, of the group C, modulo its Frattini subgroup T',.

We note that H, is cyclic of order y(r). Moreover, if z; and «, are two elements
of C, of index n, and ,, respectively, such that «, =«, (mod I',), then y(n,)=y(n,).
Thus, to each coset K; of H, there is attached a number, m;=m(K;), representing
the maximal square-free divisor of the index of any element of K,; m; is the index
of K, in H,. Two cosets K,, K, are mapped onto each other by some automorphism
of H, if and only if m; =m,. It follows that the concept of primitive function on
C, is merely a reformulation of the notion of of primitive function (mod r).

It is evident that 7, forms a subgroup of the group of all permutations of C,.
Moreover, if 4, denotes the group of automorphisms of C,, then 4,£ T,, in view
of the fact that I',, like all other subgroups, is a characteristic subgroup of C,.
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