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On group operations other than xy or yx
By A. HULANICKI (Wroclaw) and S. SWIERCZKOWSKI (Glasgow)

1. Introduction. Professor E. MARCZEWSKI suggested recently a notion of
weak isomorphism of algebraic systems (see ,,Definition™ below). In this paper
we solve a problem raised by him, concerning the weak isomorphism of groups.

In the course of the solution we show the existence of groups G which have
the following

Property (% ): There is a binary operation xoy in G, other than xy or yx,
i.e. a word

xoy=xkiyplixkayls byl (k;, I; integers)

not identically equal in G to xy or to yx, such that

(i) the elements of G form a group G, under the operation xo y,

(ii) the operation xy is a word in G,, i.e. there are integers m,, ..., m, and
ny, ..., ng such that

xy=[xlo'e[yIo o ... o[xlc* e Yo

holds identically for all x, y in G ([x]™ denotes the m-th power of x with respect
to the multiplication ¢ in G,).

G. HiGmAaN and B. H. NEUMANN [1] have proposed the following problem:
“Is there any binary operation in a group G, other than xy~! or yx~! and their
transposes, in terms of which all group operations can beexpressed 7" Our examples
of groups with Property (%) answer this question. For, it is clear that if G has
Property (), then xoy'~" where by »'~!" we mean the inverse element of y
with respect to the o multiplication is an operation required by G. HIGMAN
and B. H. NEUMANN.

As has been recently shown by HANNA NEUMANN [3], if G is a free group,
then any binary operation in G which is associative is of one of the following types:
a, x, y, xay, yax where a is any constant element of G. This covers an unpublished
result of K. URBANIK that a free group does not possess Property (). It follows
from our Theorem 1 (see the Remark) that a free nilpotent group of class 2 does
not possess Property () either.

We prove below that if G is a periodic nilpotent group of class 2 and G has
Property (), then the groups G and G, are isomorphic (Theorem 2). We do not
know whether our assumptions are essential and we would like to suggest the fol-
lowing
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ProBLEM. If G has Property (%), are G and G, isomorphic?

We now proceed to define the notion of weak isomorphism of two algebraic
systems. By an algebraic system, or shortly algebra, we mean a pair (4, F) composed
of a set 4 and a family F of operations (functions) of finitely many variables defined
on A and taking values in A. For every positive integer n we define the class A™
of algebraic operations of n variables as the smallest class of operations such that

(j) the identity operations e€}(x,, ..., x,) defined by

o ej(xy, ..., x,)=x; for all xy, ..., x,,
belong to A'",

(jj)) if f€ F is an operation of m variables and g;(x,, ..., x,), i=1, ..., m, are '
operations belonging to A'", then the operation

P20 ¢ THO TR B, (- PINRRTE 2
belongs to A'™.

We call A= U A" the class of algebraic operations of the algebra (A, F) (cf. [2]).

We shail 1dent1f)f a group G with the algebra (4, F) where A is the set of ele-
ments of G and F is the class composed of the unary operation x~' and the binary
operation xy, i. e. F={x~", xy}. Then it is easily seen that A is the class of all opera-
tions f(x,, ..., x,) which are given by words in G, i. e. which are of the form

o m mp
(l) .f("l* --'!-'u)_"u]xu . -rfr
where m,, ..., m, are arbitrary integers, i, ..., ;€{l,...,n}, and n=1, 2, ....

Definition. Let &, =(A4,, F,) and &, =(4,, F,) be two algebras and let A, A,
be the corresponding classes of algebraic operations. We say, following
E. MARCZEWSKI, that a one-to-one mapping t of the set 4, UA, onto the set 4, UA,
is a weak isomorphism of &, onto &, if

(k) Ayt=A,, APt=AY for every n,

(kk) if feAY, then [flay, ... a)lt=(fr)(a;1, ..., a,1)
for every a,, ...,a,inA,.
If the algebras &, and &, coincide, then we call t a weak automorphism of

a[=c‘11 =Lﬂz].

A weak isomorphism t of the algebras ¢, and ¢l, is an isomorphism in the
usual sense if Fyt=F,. A weak automorphism of ¢l is an automorphism in the
usual sense if it is the identity mapping on F.

ExampLE. Let G=(4, {x~!, xy}) be a group. We define a weak automorphism
7 of G by

(ky) xt=x"! for every in A,
(k,) if feA™ is of the form (1),
(| & TP 5 P Lol JOE

We call this weak automorphism natural.
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PrOBLEM (E. MARCZEWSKI): Do there exist two groups G and H such that
there is a weak isomorphism of G onto H which is neither an isomorphism (in the
usual sense) nor a combination of an isomorphism with the natural weak auto-
morphism of one of the groups?

We give in the sequel a positive answer to this question, In fact, we prove that
there is a finite group G which admits a weak automorphism 7 such that t is neither
an automorphism nor a combination of an automorphism with the natural weak
automorphism.

2. Results. In the sequel we deal only with nilpotent groups of class 2. It is
well known that if G is nilpotent of class 2, then every word

xhylixh, Xyl (k;, I; integers)

is identically equal to a word of the form x“*[x, y]* where the integers a, b and k
depend only on k,,/,, ..., k,,I,. Thus in particular the operation x oy considered
in Property (%) must be of the form xy*[x, y]*. We shall prove the following two
theorems. -

Theorem 1. If G is a nilpotent group of class 2, then a binary operation xoy
in G has properties (i) and (ii) (¢f.(%)) if and only if

(2 xoy=xylx, yI

where k is any integer such that 2k + 1 is prime to the exponent n of the derived sub-
group G" of G.

Then, if and only if m is an integer such that k +m(2k + 1) is divisible by n*),
we have that

3) xy=xoyo[x,yly

where [x, yI™ is the m-th power of the commutator of the elements x, y with respect
to the multiplication o in G,.

REMARK. This theorem answers the problem of HIGMAN and NEUMANN
(quoted above) in the affirmative. Another consequence of Theorem 1 is that a
free nilpotent group of class 2 does not possess Property (% ). For if I is free nil-
potent of class 2 and an operation xoy=xy[x, yJ* in I' has properties (i) and (ii),
then clearly this operation will have these properties in any homomorphic image
G of T'. But in the solution of MARCZEWSKI's problem below we define, for every
n=>1, a group G with two generators which is nilpotent of class 2 and such that
the exponent of its derived subgroup is n. We conclude, by Theorem 1, that 2k + 1
is prime to every n>1, i.e. k=0 or — 1. Therefore xoy=xy or yx, and these are
the only two operations in I' which have the properties (i) and (ii).

Theorem 2. If G is a periodic nilpotent group of class 2 which has Property (% ),
then the groups G and G, are isomorphic.

Postponing the proofs of these theorems to the next section we give now the
solution of MARCZEWSKI's problem.

*) The existence of such an integer m follows from the fact that 2k+41 is prime to n,
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We observe first that, for every integer n =1, there is a finite group G which
is nilpotent of class 2 and such that the exponent of the derived subgroup G’ is n.
In fact, let C be the cyclic group of order n and let the group G be defined as the
splitting extension of the direct product CX C={(a, b)|a, b¢ C} by the automor-
phism
(a, b)*=(a,ab) for all a,b in C.

Then it is easily checked that G’={(1, a)lac C}. Hence G’ is in the centre of G,
and G’ has exponent n. (For our previous application note that the two elements
o, (a, 1) generate G whenever a is a generator of C).

Now let k be any integer such that k0, —1 (modn) and (2k+1,n)=1
(e. g. k=1 if n=4). Then the operation x oy =xy[x, y]* is different from the opera-
tions xy and yx, and, by Theorem 1, xoy has the properties (i) and (ii). Hence
G has Property ( % ). By Theorem 2, there is an isomorphism ¢ of G onto G, i. e.
a mapping ¢ such that

4) (xy)p=xpoyp for all x,y in G.

To define a weak automorphism of G, we consider G as the algebra (4, {x~*, xy})
where A is the set of elements of G. Denoting by A'™ the class of algebraic opera-
tions of n variables and by A the class of algebraic operations, we define the mapping
7 of A UA onto itself as follows

(ki) xt=xp forall x in A,
(k3) if feA™ is of the form (1), then

() (g oo X =[x, ]5 0 X )70 .. 0 [, 28"

where, as in (ii), [x]? denotes the m-th power of x in G,. Then t is a weak auto-
morphism of G. The mapping t is well defined, for if £, g€ A" are such that f=g
holds identically in G, then fr =gt holds identically in G,, because G and G, are
isomorphic. Hence f=g implies fr=gr. By the same argument, fr=grt implies
f=g, and thus 7 is one-to-one on A. We also have that t is one-to-one on A, because
7 is an isomorphism of G onto G,. From (3) it follows that t maps A onto A and
thus, by (4), 7 is a weak automorphism. But 7 is not an automorphism nor a combi-
nation of an automorphism with the natural weak automorphism, because the
t-image of the operation xy, i.e. the operation xoy=xy[x, yJ* is different from
both xy and yx.

3. Proofs of the Theorems. Before proving the theorems we wish to recall some
well known identities valid in any nilpotent group of class 2. If G is a nilpotent
group of class 2, then for any x, y, z in G and any integer n the following identi-
ties hold:

nin—1)
) () =x%"1y,x] 2
(6) [xy, 21 =[x, 21y, 2}, [x, yz]=[x, yllx, 2],
hence
@) [x* y1=[x, y" =[x, yI.
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PrOOF OF THEOREM 1. Let G be a nilpotent group of class 2 and let xoy
be an operation in G which has the properties (i) and (i) (cf. (3)). Then, as we
observed at the beginning of the previous section

xoy=x%x, yJ*

for all x, y in G and some integers a, b, k. Let 1 be the unit element of G. By the
above equality, 1o1=1, hence 1 is also the unit element of G.. Therefore

x=xo0l=x% y=loy=)>*

hold identically in G, and we have (2). It follows immediately from (2) that, for
every integer n, the n-th power of any element x with respect to the operation o is
just xX". Also, the commutator [x, y], in G, can be easily expressed in terms of the
commutator [x, y]. In fact, a simple application of (2), (6), and (7) shows that

(8) [x, y)o =[x, yP*+1.

Hence [[x, ylo, z], =[[x, y]?*+1, z]**+1 =1, i.e. G, is nilpotent of class 2. From
this and from (i1) we infer that for some integers a, b, m

xy=x%cy*o[x, yJ*.

The argument used to prove (2) will also serve now to prove that (3) holds iden-
tically for all x,y in G.

We note that, by (8), [x, y]" =[x, y]"¥+1), Substituting this in (3) and using
(2) we get

xy=xy[x, yJ+mk+1)

valid for all x,y in G. Hence the order of each commutator [x, ¥] must divide
k+m(2k+1) and so, as G is nilpotent of class 2, the exponent n of the derived
subgroup G” of G must also divide k& +m(2k + 1). It follows that 2k +1 is prime
to n. This completes the proof of the necessity of the conditions.

To prove the sufficiency, we suppose that G is a nilpotent group of class 2
and that k is an integer such that 2k + 1 is prime to the exponent n of the derived
subgroup G’. In this case there is an integer m such that k +m(2k + 1) is divisible
by n.

To prove (i), we observe first that the operation (2) is associative. In fact, by (7),

(xoy)oz=xyzx, yMx, z)[y, zFF=x0(yo2).

We also have lcx=xo0l=x and x~'ox=xo0x"!'=1, so that the elements of G
form a group G, under the multiplication xoy.
To prove (ii) we note that, as before, we have (8); whence, applying (2), we
deduce that
xcyo[x, yIs = xylx, yJ+m@k+1),

Using the fact that the exponent of G” divides k +m(2k + 1), we obtain (3). This
completes the proof of the theorem.

ProoF OF THEOREM 2. The following well known lemma will be applied in
the proof.
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Lemma. If G is a periodic nilpotent group, then G is the direct product of its
Sylow p-groups.

We now assume that G is a periodic nilpotent group of class 2 which has Pro-
perty (). Then, by Theorem 1, the operation xoy is of the form (2) and there is
an integer m such that (3) holds. Moreover, the exponent of the derived subgroup
G’ of G divides the number 1=k +m(2k +1).

Let t=p7 ...p* be the factorization of 7 into primes and let

P=P,X...XP,

be the direct product of the Sylow p;-subgroups (i=1, ..., #) of the group G. Then,
by the lemma,

G=PXO0.

Of course each element of Q has order prime to . Moreover, the group Q is Abelian.
For if x, y are in Q, then, since the exponent of G’ divides ¢, [x, y] must belong
to P, so [x,y]¢P~ Q={1}. We note that also

GD:PQXQO!

where P, and Q. are the groups formed from the elements of P and Q respectively
under the multiplication xo y.

Let s=2m+ 1. We have that s is (prime to ¢, for 2m+1, m+Q2m+1)k)=d
implies d|2m + 1, whence d|m, and so d|1. We define now a mapping ¢ of G onto G, by

ap=a* if a isin P,
bp=b if b isin Q,
(ab)g=agoby for any a in P and b in Q.

It is clear that, by (s, ) =1, 5 is prime to the orders of the elements of P, hence ¢
is one-to-one and onto. We prove that ¢ is an isomorphism of G onto G,. To this
purpose it is sufficient to prove that ¢ is a homomorphism on P, If x, y are in P,

we have, by (5),
s(s—-1) a(l;s)

CPe=pyr=xyly,x] 2 =xylxy 7
On the other hand, by (2) and (7),
xpoyg=x oy =xyx’, pF=xpx, yh.
Thus all that remains to prove is that

s(1—ys)
rJ

where n is the exponent of G’. But this is immediate, for we have n|f and

=5k (mod n)

sk _’—(—Iz_i)=s (sk—'-%s) =s(@m+Dk+m) =st.
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