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On Linnik’s theorem concerning exceptional L-zeros

By S. KNAPOWSKI (Poznan)

1. Let p(/, k) denote the least prime number in the arithmetical progression
L1+ Kk, 142k, ...
where 0</<k, (ILk)=1, k=3.
LiNnNIK estimated [1], [2] p(/, k) from above as follows
(1. 1) p(l, k)<k€, C a constant.

LiINNIK's proof of (1. 1) rests on two deep theorems concerning the distribution
of zeros of L-functions. Later Roposskit [5] simplified the proof but its essential
idea remained unchanged: the above mentioned theorems steadily stand at the
bottom of it. These are (see [S], also [4]):

Theorem 1. Suppose k=3 and real 1 to satisfy
0=/i=logk.
Let Ny=N(4, k) be the number of zeros of [[ £(s, y) in the rectangle
¥ mod k

1 A
e e A T
log k log k
Then!
No=ea4,

Theorem 11.2) There exist constants c,, ¢y such that if B, is a zero of £(s, x,)
mod k(= 3), satisfying
€2

1:2 1 - = |
( ) logk ﬁl ==
then writing
51 =1-p,
we have
IT £(s.0)=0
rmod k
1) ¢4, €2, €3, ... denote positive numerical constants throughout.

2) What I quote is a somewhat stronger form of the theorem, due to K. A. Roposskir.
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for s#p, in the domain

e Cy Ao c,e
log k([ +1) 3, logk(jr|+ 1)’

Recently Professor TURAN obtained, using his method, an alternative (and
much simpler) proof of Theorem I. It was just about that time when I was in Buda-
pest so that, thanks to Professor TURAN’s kindness, had an opportunity to read
over the manuscript of his paper (which in the meantime appeared as [8]). Pro-
fessor TURAN encouraged me also to try to prove Theorem II along similar lines.
Such proof will be the subject of this paper.

For our proof of Theorem Il we shall use the old inequality of PAGE (see [3])

(1.3) c=1 o, logk(lt| +1)=c,.

Ca
t1.4) > Thlogk
(and even only
(1.4y 5y =2

and the following improved form of a theorem of TURAN (see [6]: the original
form was theorem X in [7])
I 2y 2oy 0565 2n With

Iz = |z2| = ... =2yl

are arbitrary complex, g =0 arbitrary and N= M, then there is an integer = with

(L.5) g=x=g+M
such that

M )”
(1.6) Iz,i +;2+-..+3N|2(mm_ 'Izll .

It may be noted that in all probability the present proof of Theorem II will
provide better (i.e. greater) constants c,, ¢y which would be of importance for
numerical estimations of C in (1. 1).

2. Write

S, =205, 1)-S(s+6y, 1), xmodk

and suppose g, = o+ Y0, o= %, 00 # P, to be a zero of f(s, y). Writing

5=1-B,
U=1+|y,l
A=0dlogkU,
and supposing y # y, (the main character) we shall prove
2.1 0y log kU= c4e~<*

The inequality (2. 1) gives clearly the statement of Theorem II. It follows in fact

that J] f(s, ) #0 in the domain (1. 3) (with some suitable c,, ¢;). In particular-
1% 10
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S(s, x,) #0either, whichmeans thatif o* = f* 4+ iy*, p* =4 4+9,,0, logk(1 + |y*))=¢c,
is a zero of £(s, y,) then (o* —4, being a zero of f(s, x,))

Cs3 c,e
Togk (7 1+ 1) °8 3, log k(7" = 1)

Since the statement of Theorem II is not touched by diminishing of ¢,, ¢;, it may
obviously be assumed that ¢;=2¢,. (2. 2) then yields

et

2.2 el e b

2c, it c,e
logk (I +1) 275, logk (I7*[+ 1)

+61§l_

= *ﬁz et CH€
logk (17*1+ 1) "8 3, Togk(7*|+ 1) °
This shows that ]] >t(s 7) #0, apart from s=p,, in the domain (1. 3) with some

(eventually smaller than those above) constants c,, c;.

It will be enough to prove Theorem II for k sufficiently large. In fact, for
“small” values of k ¢, may be chosen in such a way as to have no zeros of [J] £(s, z)
in the interval (1. 2). xmodk

We introduce a certain number =1, to be numerically determined later,
write for brevity f(s, ) =/(s), and supply a number of following simple lemmas.

(i) There exists a zero o' =P +iy" of f(s) such that

(2.3) B'=Bo, 1Y — 10l =>4
and f(s)#0 for
1
, e 4z
(2.4) ﬁuLoclogkU“a 2, t—9|=se

(0" may happen to be just g,).

1
1 et —_y = 4’
Let us consider first the rectangle f,+ - logkU =0=2, |t—yol=e*. If f(5)
did not vanish there, lemma (i) would be true with 9" =g,. If not, there would

1
P . (1) — BC1) 4 713 : 1) i
exist some f-zero p Y +iy with f' }ﬂ°+alogkU’

————=0=2, [t—yV|=e*
o log kU ey
and repeat the former argument. Proceeding on that way we must arrive in g steps

Y1) — yol e,

In this case we should consider the rectangle ') +

(where —qw 6) at a ¢’ =pf" +1iy satisfying (2. 4). It follows that ¢ <« and

[y" — 70l = e**ad < Ae, Q.e.d.
Let us write now
61: 1 — ﬁ’
U=1+1y|
A =d"logkU’.
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(i) We have ., 2" =cg (0<=cg=1) (see [4], 130, Satz 6.9).
(iii)) Let Q= Q(ty, w) be the square
lyb—0O=t=t,+o
1-2w=0c=1,
where 0 =w=1. Then the number of zeros of f(s) in Q:
2.5) Viw, ty, 7)< comlogk (Jto| + 1)

(2. 5) is trivial for @ <ecyo(log k(|ty] +1))~' with a suitable ¢, since then
V(w, ty, ) =0 (see [4], 130, Satz 6.9). Hence it may be assumed

2.6) o=cqo(logk (|tg] + 1)1
Noting the approximate formula (see [4], 350)
T
= (s0)= O(log k (|¢ 1)),
f(-fu) |;--§|';150—Q+ (log & (Ito| + 1))

where so=1+w +it; and o= f +iy runs through the zeros of f(s), using further
(2. 6) and the (simple) inequalities

) i Cqq
= —
Rf(SO)_
and
l l S ](wvrmx}
ZR Z D A i1 i
ly=to] =180 — €@  o€Q So— @ 10w

we obtain the result.
3. Let integer r, to be fixed later, satisfy the inequalities

@G.1) CLal Sr=cyh,

12 : :
where L o =¢y,+ 9. We have in particular
B

3.2 r=12, ¢;, =12,
Let us put further
2o o
A=, B=3
We have
L e R RNl s
f n=1
where

p = [N+ 0@Dp=™) if  n=p, m=1
o 0 otherwise.



172 S. Knapowski

Starting from the integral

) 18 OB il s S 0
Ry {‘”‘ W—} -7 (@ wWdw

(2)

we have by term-by-term integration

Wi e B 1 o P —e~B* | Tdw
(3.3) J. (¢ )#..;.Z; A {e 2Bw =
(2)
Noting that the integrals at the right-hand side of (3. 3) vanish for n=e“+B8r and
also, if we move the line of integration to-say-¢ = — 1, for n=e4-5r  we obtain
A
(.4) 1(@)= 5A® g n, 4, B),
(A=Br S (A+By N
where
4o
1 eBv—e-Bv|"dy 1 sin Bt \"
def ____ ey e (Ar—logm)ir| =~ "
R(m, 4, B)= H" 2Bw }n“’ an) ¢ ( Bt )d"
(0) A
Hence it is easily seen that
- .
(3.5) IR, (n, 4, B)| =5 <~
By (3.4), (3.5) we get, putting h, =ac,,, h, =3ac,,,
s 9 1+ % (P")p~™"
J, =— - , logp=
Veet==- ég =, gp
—md;
(KU Yy =pm= (KU’ )y P
and finally
m - midy
(3.6) @Ns3e ety 3 LH6 @GP
(KUY, = p= (kU )R "
WheI‘e hl '-=0'.Clz, h2=3a(.'13.
4. It follows by the theorem of residues
4.1)
_eBle=¢') — g=Ble=o)\" 1 ebv — o —Bw "f"
J.(0) = — Ale~¢') s o SON——— N7 dw,
(@) %’(e 3Blo—2) ) 2::(:‘ ]J. je = } f(e +w)dw
where ¢ denotes the zeros of f(s). Further we have for w= —4—f"+it (see [4],
227)
‘?(9'4-“’) =cyqlogk (It + 1Y+ D) =cyqglogk(ft] + D[+ 1) =

=cy4(logk U+ log (l1] + 1)),
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whence
eB_w___e—Bw r f"
¥ | i et N Uy R
e 3Bw } f(g +w)dw|=
(=% -8")
——r( 1a+87)
e 1 og kU’ log (Jt] +1) 1 -zc g
50]4 B ( rz)'hd +J (l+f2)r"2 dt _CISB_e é logkU§
4 cyslogkU’ c,slogkU {l_
= :a:"(:'n’.»”)""Iz kUM o’
if k is sufficiently large.
This and (4. 1) give
' . , A B
“.2) |7, (e )IEIZ%I—? (if k=cyp),
e
where
B(o—¢') — p—B(o—0")
ap=ed(o—p')e i d if p£0

2B(e—2")
a;=1.

5. In this section we shall estimate from above the sum

I= _ 2 e

0€Q(7',8")
Let K, (u=1,2, ,[;], v=1, 2, ...) denote the square
B—us=0=p —(u—1)7,
Y4+v'=t=y+(v+1)4d.

The number of f-zeros in K, is by (iii)

éV(}v'+(v+-;-)6’, ’i;—'-é',x) ..fg(‘““)a o k(U‘+(v+—;-)6'),

whence

(u+1) . 8 1
def r= R ~a(u-1)r, :
R *Z“v[agl =0~ O logk| U+ | v+ 5 o e @y

Noting that -:Tlogk(U'-f (H—%)é’) decreases for v=1 we have

e—c[n—l]r j.'e—a(n—l)r

5’(,u+1):$’logk(U’+ 6) e <ot ) ————
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Further
,e—a(u+1)r = 1 Ae—xu—1)r
L= _Z’Im_cg(,u+ 1)A ZI'T—c,-;(Ju+ I)T
and
Ao @t]) _ A3 _Cig#
u;f}r 5017“ru; e’"““’ 22‘ g

Next we estimate the number of zeros in the squares
f—u=c=p—(u—-1)0,

K yY=stsy 4+,
.
,u—2, 3, ...,[5—,:].
Similarly as before
) ALkl ek

al = e——1ar,___
2= 3 .

(‘H))"‘:Cg 2 —— =< .
2=u=2)¥ 6K, | 2=a=2/8 of Shela-1)ar — or

Finally, bearing in mind (i), we have to cope with the zeros in the domains

@ . o e
Y+d=sSt=y+e¥
and
D,: f=o<l1
t=>9"+ e
We have
del‘Z'a Ir _‘lé‘&ﬁa’]o Er4 p+i dl=
2,4 (BWY . %l be
(3 o)
= o' logklU ) ,, & 1 ; . S
e o ¥ 2 =ernge p(a' logkU)
But
3 r _3e3logklU _ 3cy;log {k(U+Ae)} _3eis log {k(U+ ek U)}
& logkU log kU » log kU log U
3 2log kU+6 :
<2l l::ggkU+ d)“-"‘—'lsv if k=ko(a).
Hence

’

IDI‘E

=Cn for k=ko(x)



On Linnik’s theorem 175

Further
o 8 log {k(U+ (v+1/,)d)} P |
S el =cee’™™ 2> - < cgedT —
&b, e P8 (Bvo') o L
e =[7] =[7]
AL =~ 1 AL
- cgea“' ? 8_4’('_3]v= ] —vz =C32 ?

(the latter by (3. 2)).
Estimating similarly in domains symmetrical to K,,, K,, D,, D, with respect
to t=7y’, we obtain all in all

’

!"51723 i%: for k= ﬁ:o (I),

whence and by (4. 2)
: g
(5.1) I.(@)lz=| 2 al—cy— for k=ko(a)
0€0(7',5) -4
6. Now we shall estimate from below the sum

| 2 JI%8S..
0€Q(7',8") ©

We use (1. 6) putting g=c,,4", M =cy/A’, whence (N=M and (1. 5) being obvi-
ously satisfied owing to (iii) and (3. 1)) with a suitable r

Cod'
== e = e~ €254’
(6.1) S, (23c13) e 3

Fixing now 2 numerically so as to have

e—c;,,a‘_(.246.—1'.’(:'1;&:3«—I}:,,e-—Zc;y‘."
and by (5.1), (6.1), we get

(6.2) |7,(")| = e 2cs¥

with (already!) k=c,4.
(6.2) and (3.6) give with some ¢,,=12

6.3) > 14+ 1, (p™)p—™n

>e=cnd,
(kU')er= pm=(kU’)e2 7

Let us note that owing to |U"— U|=c30A =c30 log kU we have log kU =2 log kU
and similarly log kU=2log kU’. Noting further that é’=J we get from (6. 3),
with some ¢y, =6,

m =md)
(6.4) Su {10 PN

(kU)e31= p™ = (kU)*®32 b/
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7. It may be assumed that
(7.1) l—;l;lée“w‘ for pm=(kU)»

with an arbitrarily fixed cy,.
For, in the opposite case we should have

1

e—(‘;.‘i{ 1 — W z
whence
s 1 i 1
» 1 €320, logkU ’
(ku)éuru

20 (21
{7.1) gives then

—dym
1+, (p™)p e:e““"( b l.;_z Z%)qc”e—cm
pm

(wm(: gmp,ms(tumz i (kU)esi = p=(kU)<a2 P =2
XitpT)= —

whence, by (6.4) and with ¢;, sufficiently large,

(7. 2) "1_' ‘-"'e_""'*, (031 26),

(kU)en 5‘;':‘5“:!.’)‘3:
npm=1

k being supposed to be =c,4.

Writing
a, m
S= > =, where a=3Fx,d= [I' {1+nu@)+...+010E"}
n=(kU)z 1 dln pin, p™* in
we get by (7. 2)
a 1 a, 2
Se—cih m B~ =0 _
{-:z-(kb’ri ny (ku}"JIEPZ":E{lUI‘H P om=@U) Ny PP
n(pm™=1

with m(p) being the minimal exponent such that (kU)» =p"? =(kU)** and
71 (p"®)=1. It may be noted that numbers n=(kU)**? can be reprcse_nted in

c32t2

> ways at most as n, p™?” whence
31

€32 +2 ay

Se=¢%i<2
Cay  (kU)enn=n=(kU)esz+2 N

Hence and by the formula (see [4], 362)

& " log x
2 =S, xy)ogx+e37) + (1, 1) + 0("‘%)

nEx



On Linnik’s theorem 177

we obtain

1 s
¢ inFx
(1.3) LD+ 5™ Tog kT

- t‘;gl

8. The conclusion of the present proof runs along the previous lines (e. g.
those of [4], 362 —363). However, for the sake of completeness, I shall reproduce

it here. Starting from the identity

& a
C(S):‘:(S, X1)= Zn_:’ 0}11

n=1
we have with X=(kU)~':

Zmﬂ“"fxn:%! Xh=sT(s—B)C ()L (s, £1)ds.

n=1 i
(2)

Moving the line of integration from ¢ =2 to 6= —% and using the theorem of
residues we get
@.1) 3 an-te-¥n=X-4T'(3,)L(1, 7,) + O((kU)-*)

n=1

and also, in view of a,=d(n)=n (d(n) number of divisors of n)

(8.2) S an-teXn=s ne—xﬂgzs—;.

n>(kU)2 n>(kU)2
Further, with sufficiently small 6, log kU,

PO e g E{".ndne—x"g(kU)z"lS-ccmS,

n=(kU)? n=(kU): N
whence, together with (8. 1) and (8. 2),

f(ls'f.t)__ Cq2
5,  (KU)%"

S=cyy

Using now (7. 3) we obtain
log kU

e~ <§, logkU+ U

Hence and by (1. 4)" the desired (2. 1) follows.
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