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On monotonic sequences defined by a recurrence relation

By D. BRYDAK and J. KORDYLEWSKI (Krakow)

Introduction. The subject of the present paper is the recurrence relation
(1) Xpsi =AX,+ F,, =01 2.

where {x,| is the sequence to be defined, while F, is a given sequence and 4 is a
given real number.
There are infinitely many sequences x, satisfying relation (1). They are all
contained in the formula
n—1
(2) X=X+ 2 AFiizs, ok [
i=0

where x, may be taken as an arbitrary real number. We are omitting the easy proof
of the equivalence of (1) and (2). Thus formula (2) gives an uncountable family
of solutions of (1). But sometimes a particular solution can be chosen by some
additional requirements.

In the present paper we shall establish some conditions of the uniqueness and
existence of monotonic sequences satisfying relation (1). In the case 2= —1 this
problem has been investigated in [1]. [4]. (Regarding the case 4=1, compare also
[2], [3]). We shall also give some applications of the obtained results to the theory
of functional equations.

1. Uniqueness. We shall prove the following

Theorem 1. /f /=0 and

(3) lim f” =0,

n
n=e A

then there may exist at most one monotonic sequence x,. satisfying relation (1). If it
actually does exist, then the series

(4} Y n+k
kt‘['l )J(+l

converges for every n and the sequence x, is given by the formula

:;' Fn*k

e )'l'-rl'

(3) X, = —
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Proor. From relation (1) the formula

: m-1 4 H”:O. ].2,...
(6} -\-nrnr:"m'\-n'{' I_;(" "JFu+m—|‘-l' m=I.2,
follows easily (e. g. by induction). Let us suppose that there exists an increasing
sequence x,, satisfying (1). Thus we have for arbitrary n=0p=1

N+ 2pt1 ="‘Yn+.‘.p+ Fu+2p::=-“‘!l+2p'

whence. since 2 =0,

Fatap
A—=1 "

Xut2p= —

Now we make use of (6), setting m=2p. Thus

2p=-1 F
R T o n+2p
Ax . + X MF, 0y i 1= ——F,
P T i—1
whence
2p-1
= — FT f"”f"__ft' _ ....F"‘ZP
R iy ™y AT (A—=1)a2r’

and after a change of the index of summation

(7) Xp=— 2 - ——

Similary, starting from the relation

".n+2p+;‘ = AN 2p+1 T F, +2p+1 ‘-:""n+2p+1"

we can get the inequality

Ip s F
g vz — Samek Faraper
(8) n g = pLES (,v__l),.lp+l
It follows from (7) and (8) that
Fn+2p 'FJH-.'!p-!-I e :P;‘I Fu+t = ‘Fn+2p
i TERT TG-S T G TS T A

Hence. as p-—-<=, according to (3) we obtain formula (5), and consequently also
the uniqueness of the sequence x,. Also the convergence of series (4) follows immed-
iately from (9).

If we assume that x, is decreasing, we obtain the inequalities

-1 - 2 .
_pv !‘n_‘.-_k_ ’ s _Fu1-2p =y = — g‘r Fni-.ﬁ = _{-i+_2p+_|
K=o Ak+1 (/:— I)/..:”_ i =0 Ak+1 (;.— 1);.2"’41

and we proceed further analogically.
This completes the proof.
From Theorem 1 immediately follows
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Corollary 1. /f 7= — 1 and
(10) limsup |Fp.y— F,| =

n—s oo
then there may exist at most one monotonic sequence x,. satisfying (1).

In fact, it is obvious that for 2 = — 1 condition (10) implies the fulfilment of (3).
Condition (10) is for 2= — | stronger than condition (3). But for 2= — 1 even
the condition

(rn lim |F,,,—F,|=0

is weaker than (3). As has been proved in [1]. condition (11) guarantees the uniqu-
eness of the monotonic solution of (1). This together with our theorem 1 gives
the following

Corollary 2. If 2= — | and condition (11) is fulfilled, then there may exist at
most one monotonic sequence, satisfving (1).

Thus Theorem | and Corollaries 1 and 2 give some conditions of the unique-
ness of monotonic solutions of (1) in the case A <0. On the other hand, if 2=0
the uniqueness of monotonic solutions does not occur. To see this it is enough
to show that the homogeneous equation

(12) Xov1 =A%y, n=0,1,2, ...

has always infinitely many monotonic solutions. But it is so, in fact, for. according
to (2). the general solution of (12) has the form

(13) b o L n=0102 0

The sequence (13) is increasing if (4 —1)x,=0, and decreasing if (4 — 1)x,<0.
Thus, since the sum of two increasing, resp. decreasing sequences is itself increas-
ing, resp. decreasing, in the case 4=0 there are either infinitely many monotonic
sequences fulfilling (1), or none.

But we can obtain the uniqueness of the solution of (1) also for 4 =0, replac-
ing the requirement of the monotonity of x, by another condition, somewhat sim-
ilar to condition (10). Namely, we shall prove the following

Theorem 2. If |/ =1, than there may exist at most one sequence X,. satisfyving
relation (1) and fulfilling the condition

(|4) lim sup !xn+l "'\‘rll =

Proor. Since the difference of two sequences fulfilling condition (14) also
fulfils condition (14), it is enough to prove that the only sequence satisfying the
homogeneous relation (12) and fulfilling (14) is (for |4 =1)

(15) x.=10, =012

Formula (6) has now the form

Xo g AR,
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If there were an index N such that x, =0, we should have

lim sup [x, 4, —x,| =limsup |1 — 1| [x,|=lim sup |2 — 1] |2]"~N|xy| = ==,
in contradiction with (14). Thus (15) holds, which was to be proved.
In the case 4| =1 every sequence of the form (13) fulfils condition (14). Cons-
equently the latter does not guarantee the uniqueness of x, for |i| < 1.

2. Existence. As is easily apparent from the form
Fn =Xp41 ™~ ;"tu

of relation (1), if 2-=0 a necessary condition for the existence of an increasing
(decreasing) sequence x, satisfying (1) is that the sequence F, be increasing (dec-
reasing), but it is not sufficient. If the series (5) converges, its sum always satisfies
the relation (1), but is not always monotonic. Some conditions for the existence
of the monotonic solution of (1) are established, however, by the following

Theorem 3. /f

(16) |2] = lim sup V| F,|

Py
and either
a) A=0 and the sequence F, is increasing (decreasing),; or

b) A<=0 and the sequence
(17) u, 3%F, .+ AF,

is increasing (decreasing),
then formula (5) actually defines a decreasing (increasing) sequence, satisfving re-
lation (1). In case b) it is the unique monotonic sequence satisfving (1).

PRrOOF. The convergence of (4) follows immediately from (16) in view of the
Cauchy—Hadamard theorem on power series. Thus (5) really defines a sequence
satisfying (1). This sequence is evidently decreasing (increasing), if 2=0 and F,
is increasing (decreasing), as sum of decreasing (increasing) sequences. When /4 <0
we have

v =— Shn_  sFun_ § B
n k._—-{) ;'k+l i;—l'o }_2t+l i‘;_i'f) ;._2!-&2
T Ev Fasaivatabeai 5 Unsai
(= AR+l P (,‘})H—I

whence it follows (since 4% =0) that the sequence x, is decreasing (increasing) if
u, is increasing (decreasing).

As the convergence of series (4) implies condition (3), it follows from Theorem 1
that in case b) the sequence x, given by (5) is the unique monotonic sequence satis-
fying (1). This completes the proof.

The convergence of the series (4) is not necessary for the existence of a mono-
tonic solution of (1). This is clear from the example of the recurrence relation

(18) Xpoq42x,=2m42,
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which is satisfied by the increasing sequence') x,=2", while
';‘n""": '§'2n+1=m.
isod**t 5o

From Theorem 3 results, however, the following

Corollary 3. If /. =0 and the series (4) diverges, then there may exist monotonic
F,
i ~+0.

Now we shall find a necessary and sufficient condition of the existence of a
monotonic sequence satisfying (1) in the case 42 <0. To this purpose we write

Fk Fp+1

sequences satisfying (1) only if

P
S,id— >

o A1 (A=1)arH!

and we put further

G, % supS,,, 0,.%infS,,, go9supS,,_,, g% inf§,,_,.
p=1,2,... p=1,2,... p=1,2,.. pr=12,. ..

We shall prove the following
Theorem 4. Let .. be negative. In order that a sequence x,, defined by the re-

currence relation (1) (or, what ammounts to the same, by formula (2)) be increasing,
it is necessary and sufficient that

(19) 0= Xo=0g.

Similary, in order that a sequence x,, defined by relation (1), be decreasing, it is
necessary and sufficient that

(20) Go=Xo=0,.
Proor. We shall prove only the first part of the Theorem, the proof for dec-

reasing sequences is quite analogical.
If x, is an increasing sequence satisfying (1), then we have by (7) and (8) (n=0)

(21) SIPE'\'O’E‘_SZp—|' P= l, 2, ven g

whence (19) follows immediately. On the other hand, let x, be a sequence satis-
fying (1) (and thus of the form (2)), and let us assume that inequalities (19) hold.
Then inequalities (21) hold too, and we have by (2)

2 2p~1
2p p
“‘2,,.;.' _A\'Ip:/.zp‘* I_\‘O _}" _‘2{; /."sz._i——fuzp.\‘ﬁ_ iz‘; /.'sz_i_l —
i= =

2p 2p
sir ) o
=2 (A—1)xo+ 2 VFy,— 2 A 1F,, =
i=0 i=1

2p
=24 Dxo+(A—1) D A-1F,,_ 1+ Fp,=

i=1

2p-1 2
:;.Zn(;._n[xﬁ S PR -]=;L=n{;.-1)(.%452,,_1);_:0,
k=0

AT (G 1)i

) There are also other monotonic sequences satisfying relation (18). We shall find all
of them later.
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and similarly
.\'2:,;.2 = '\‘2p+ 1 =j2p+1 {). — 1 )(.\‘u =2 Slpl =0.
This means that the sequence x, is increasing, which was to be proved.

Now we are able to determine all monotonic sequences satisfying relation (18).
We have

s $ 2 e s $o_tpere iy
= — ke a3 > " . By 5
o =0 (=21 (=3)(—2)*! k':o{ i 3( )P,
whence
v 4
6‘,:0‘,.:-3.0'0:0‘0;:3_

Consequently a sequence x, satisfving relation (18) is monotonic (increasing) if
and only if

IIA

h"

20 08
 Taate i )

For x,=1 we obtain the formerly found solution x,=2".

3. Consequences for functional equations. The results obtained can be applied
to establish some conditions of uniqueness and existence of solutions of the func-
tional equation

(22) g f()] =g () + F(1).

Here ¢ (r) is the unknown function, f(r) and F(r) are given functions, and 40
is a given real number. Throughout this section we shall assume that the function
F(¢) is defined in an interval (a, b) (finite or not) and the function f(¢) is strictly
increasing in (a, b), f(1) =1 in (a, b), f(1)E(a, b), for1£(a, b). By a solution of equa-
tion (22) will be understood any function ¢ (r) defined in (a, ) and satisfying equa-
tion (22) for 1€ (a. b).

Let f"(¢) denote the n-th iterate of the function f{1):

o= f=rr-1nl n=12, ...;t€(a, b).
Putting x,%¢q [/"(1)]. F,%F[f"(r)]. we obtain as an immediate consequence of theo-
rem 1 the following

Theorem 17, If /=0 and

v Fl (1) :
lim - [fn ] =0. for t€(a,b),
then there may exist at most one solution of equation (22), semimontonic | [} in
(a, b) 2). If such a solution actually does exist. then it is given by the formula

et 2 i
(23) g(D=— 2 —[!—( )] ;
k=0

/‘kd- 1

1€ (a, b),

and the series on the right-hand side of (23) converges.

2) The definition of functions semimonotonic | f} has been given in [1]. ¢lr) is semi-
increasing | f}if @ [f(1)]= p(7). semi-decreasing |/} if @i f{N]=wp(r).
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Corollary 1. /f' /<= — 1 and
limsup |F[ /' ()] = F[f" ()]l == for t<(a. b).

nH—=

then the equation (22) may have at most one solution semimonotonic | f| in (a, b).

An analogue of Corollary 2 is also true (cf, [1]):

Corollary 2°. If A= —1 and

lim [F[ /"' ()] = F[/*(D]|=0 for 1€ (a,b).

n— o

then equation (22) may have at most one solution semimonotonic | f} in (a, b).

If ~=0, the equation (22) possesses either infinitely many solutions which
are semimonotonic {f} in (a, b), or none. If moreover 4 1. we may replace the
word “semimonotonic { /| in the preceding sentence by the word “monotonic™
(for 2 =1 the situation is somewhat different; cf. [2], [3] under suitable conditions
there may exist at most a one parameter family of monotonic solutions of (22)).
To prove this we need only to show that if 2 =0, 4 = I, then the homogeneous equa-
ton

g[ (0] =4q (1)

has infinitely many monotonic solutions. But its general solution is given by
g()=2rqg[f-r()] for 1€ <fr(ty). fri(ty)=.

wiere t,¢(a, b) and ¢ (7) is an arbitrary function defined in <1¢,, f(#,) =.
This solution is evidently

a) increasing, if (A—1)g(1)=0,¢(r) is increasing in <1,.f(1,)> and
lim  g()=4q(ty):

t— fltg) =0
b) decreasing, if (A—1)g(1)=0,q(s) is decreasing in <=1, f(t,)= and
lim g (1) = A7 (1,).
t=fitg) =0

From theorem 2 follows, however, the following

Theorem 2. /f |4 =1, then equation (22) may have at most one solution that
fulfils the condition

(24) limsup l[g[ "+ ()] —q[/*D]l=== for 1<(a,b).

Making use of theorem 2" we can prove another form of corollary 1”:

Corollary 17, If 2= — | and there exists an t, € (a. b) such that

(25) limsup [F[ "' (15)] — F[ f"(15)]| = ==,

=+

then equation (22) may have at most one monotonic solution in (a. b).
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Proor, We have by (22)
FLr@] - FL M @)l =gL " (te)] — oL (10)] — 2{g[/*(10)] — ¢[S"~ ! (16)]}-

whence it follows by (25), in view of the facts that the functions ¢ () and f(1) are
monotonic, the sequence f"(¢,) is increasing, and i <0, that

(26) limsup ¢ [_f"* I (!0)] — [_f"(.rﬂ}] - oo,

We have further for 1€ =1, f(t,) =
L) SLOS* L (D= 2(1,),

whence it follows on account of the monotonity of ¢ (), that for 1€ —1,. f(1,) =
lgLrt O] =l O)I= g2 )] — oL o)l = lg[f*2 ()] — [/ (1)1~
+lg[f"** ()] — gL F" )] I-

Consequently, according to (26), condition (24) is fulfilled for all t¢ =1, f(1,) =.
But since each number from the interval (a, b) can be represented in the form
r=fN(t), where i € =1, f(t,)>= and N is an integer (positive, negative, or zero).
(24) is fulfilled for all 1€ (a, b) and our assertion follows from Theorem 2.

From theorem 3 we obtain the following

Theorem 3'. If /| =limsup I"iF[,_fT(?}'}‘ Jfor all t1¢(a, b) and either
a) 2=0 and the function F(t) is semiincreasing |f}| (semidecreasing |f}) in
(a, b): or

b) .=0 and the function F[f(1)]+/iF(t) is semiincreasig | [} (semidecreasing
(1) in (a, b):

then formula (23) actually defines a function, which is semidecreasing | f| (semiin-
creasing | [ }) in (a, b) and satisfies equation (22). In the case b) it is the unique solution
of (22). seminotonic | f) in (a.b).

Coroliary 3. If /=0 and the series (23) diverges, then there may exist semi-
monotonic |} solutions of (22) only if

FLf ﬂ..(-")‘]‘ <0
/. ’
for a certain 1,¢(a. b).

Theorem 4 has no simple analogue for equation (22).

It is evident that in Theorems 1" and 3" and in Corollaries 1°, 2" and 3’ the
words “semimonotonic {f}”, “semiincreasing {f}” and “semidecreasing {/}" may
be replaced by the words “monotonic”, “increasing” and ‘“‘decreasing’™ respec-
tivelv (of course. in hypothesis and in statements). In the case of Theorem 1" and
the Corollaries it follows from the fact that (since f( 1) =) every monotonic function



On monotonic sequences 197

is also semimonotonic {f}. For the Theorem 3" a proof would be necessary. but
it is quite analogous to the proof of Theorem 3 and thus we omit it.

We are expressing our thanks to Dr. M. Kuczma for having called our atten-
tion to this problem as well as for his valuable remarks.
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