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Oscillation criteria for second order half-linear
differential equations
with functional arguments

By JANN-LONG CHERN (Chung-Li), WEI-CHENG LIAN (Chung-Li) and
CHEH-CHIH YEH (Chung-Li)

Abstract. Oscillation criteria for the second order half-linear differential equa-
tions with functional arguments of the form

(*) [y ()1 Y (O +p) F(y(1), y(9(t)) =0,

are established,where o > 0 is a constant and g(t) — oo as t — oco. These results
exhibit a surprising similarity in the oscillatory behavior existing between (x) and the
corresponding differential equation

y" () +p(t) f(y(t), y(g(t))) = 0.

1. Introduction

Consider the following three second order differential equations

(E) [r@)]y' ()| )] + p(t) £ (y(1)), y(g(t)) = 0,
(E1) [r()y' ()1 @) + ) ly(g()I” y(g(t) =0,
(E2) [r()ly' ()] ()] + Ap()|y()|*Hy(t) =0,
where

(a) p,g € C([ty,00);R) for some ty > 0 and tlim g(t) = oo;
(b) 7 € C*([to, 00), (0,00));
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(c) feCRxR,RN), f(x,y) has the same sign of = and y when they have
the same sign, that is,

>0 ifx>0,y>0,
<0 ifz<0,y<O0;

f(:c,y){

(d) « and (3 are positive constants.

Throughout this paper, we define

7(t) := /too(r(s))ids, t > to.

In [1], ELBERT established the existence and uniqueness of solutions
to the initial value problem for equation (E3) on [tg,00). Note that any
constant multiple of a solution of (Eq) is also a solution of (Ez). A nontriv-
ial solution is called oscillatory if it has arbitrarily large zeros; otherwise
it is said to be nonoscillatory. The equation (E3) is nonoscillatory [resp.
oscillatory] if all of its solutions are nonoscillatory [resp. oscillatory].

Surprisingly, some similar properties between equation (Eg) and the
linear equation

(Eo) (p®)y") +a(t)y=0,t=>0

have been observed by ELBERT [1, 2], Mirzov [9, 10, 11], KusANO and
NaITo [4], KUuSANO and YOSHIDA [5], KUSANO et al [6], L1 and YEH [7, 8.
For example, Sturmian theory for (Eg) has been extended in a natural way
to (E2) by ELBERT [1], L1 and YEH [7].

linearly independent solutions of (E5) separate each other. If « = 1 and
r(t) = 1, then TrAVIS [12] and YEH [13] established some sufficient condi-
tions on the oscillation of (E). TRAVIS [12] also gave a sufficient condition

They showed that the zeros of two

on the oscillation of ¢/ (t) for any solution of (E3). For the other result, we
refer to KUSANO and LALLI [3].

The purpose of this paper is to extend the results of TRAVIS [12] and
YEH [13] to the equation (E) by using a result (lemma 3 below) of L1 and
YEH [7].
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2. Oscillations of Equation (E)

Theorem 1. Let w(ty) = oo; and
(C1) there exist a constant k and a function h(t) € C([ty, ), R) such that
h(t) < g(t) and 0 < k < h'(t) <1

(Cq) there exist a constant M > 0 such that |y| > M implies

lim inf | f(y—’)

|w|—o00 |w|a Lw

| >e>0

for some € > 0.

(C3) p(t) > 0 and limsup A(t,tg) > ft A(t, ) p(s)ds = oo,
t—o00

to

where A(t,s) = fst(r(u))%1 du; A > 1.
Then (E) is oscillatory.

PROOF. Assume the contrary. Then (E) has a nonoscillatory solution
y(t). Without loss of generality, we may assume that y(¢) > 0 on [T, 00)
for some T' > tg. It is easily to verify that y'(¢) > 0 for large t. Let

r()ly ()1 (t)
ly(h(t))|*=ty(h(t)

w(t) =

Then w(t) satisfies

ey Fly®),y(9()  y'(At),,
W O =0 G ety gh) "

fort>1T.
Since y'(t) > 0 for large t, tlim y(t) exists either as a finite or infinite
— 00

limit. If tlirgo y(t) = b is finite, then
fly(),y(g(t))) _ f(b,D)
ltylg@®) b

> 0.
(
If tlim y(t) = 0o, then, by (Cz), we have that

lim
t—oo |y(g
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for all large t. Let &1 = min{e, £ b,0)

}. Since y(t) is increasing for large ¢,

we have that , Qba
fly@), y(g(?))) Fly®),y(9() o _
) ) RN L reI0) Rty
and
v, e
0 L Ou(0) > ke (0w 1),
for all large ¢. It follows from (1), (2) and (3) that
@ W' (t) < —e1p(t) — akr= (Hw e (t)
< —e1p(t) <0
for ¢t > T ,where T is large enough. This implies
(5) /T ANt s)w'(s)ds < —51/T ANt s)p(s)ds.

Since

/ ANt s)w'(s)ds = )\/ ANt s)r 71( Yw(s)ds — w(T)AN¢, T),

T T
we get, by (5)

t A
ca N et) [ e <um {50 <wm.

Hence

¢
lim sup 51A>‘(t,t0)/ ANt s)p(s)ds < w(T),
T

t—o00
which contraticts condition (Cs). Thus, our proof is complete.

We say that (E3) is strongly oscillatory if (Eq) is oscillatory for every
A > 0. In order to discuss the next two theorems, we need the following
three lemmas:

Lemma 2 (KUSANO et all. [6]).

If [*( = ds = oo, then (Eq) is strongly oscillatory if and only if
(Cq) p > 0 is 1ntegrab]e on [tg,o0) and hm sup A%(t,t0) [ p(s)ds = oo,

where A(t,tg) is defined as in Theorem 1.
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Lemma 3 (Kusano and Natio [4]). If [*( “ds < oo, then
(E2) is strongly oscillatory if and only 1f
(Cs) p > 0 is integrable on [tg, 0o ft ) lp(t)dt < oo, and

limsup 7~ () /too(w(s))o‘+1p(s)ds = o0.

t—o0

Lemma 4 (L1 and YEH [7]). Equation (E) is nonoscillatory if and
only if there is a function w € C[T, 00) for some T > tq, satisfying

W' () +p() + ar” T (Bw(t) = <0,
Theorem 5. Let (Cy) and (C3) hold and w(ty) = oo. If condition
(C4) holds, then (E) is oscillatory.

PROOF. Assume the contrary. Then (E) has a nonoscillatory solution
y(t). With loss of generality, we may assume that y(t) > 0 on [T, c0) for
some 1" > tg. Let

r@®ly' 1“1y (t)
ly(h(t)[*~ y(h(t)

As in the proof of theorem 1, we have

w(t) =

1+«

W' (t) + e1p(t) + akr = (H)w s (t) < 0.

If u(t) = k*w(t), then

—1 1+«

u'(t) +e1k“p(t) + ar= (t)u = (t) <O0.
It follows from lemma 4 that

[r (0 ()] ' ()] + ek p(t)u(t)|* u(t) = 0

is nonoscillatory. However, this contradicts the fact that (E3) is strongly
oscillatory (by Lemma 2).

Similiarly, using Lemma 3 and Lemma 4, we can prove the following

Theorem 6. Let (Cy1) and (C3) hold and w(ty) < oo. If condition
(Cs) holds, then (E) is oscillatory.
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3. Oscillation of the derivative of a solution of (E;)

Theorem 7. Assume g(t) is differentiable, ¢'(t) > 0, and
[Fp@)dt = co. If [~ re (t
so]ution y(t) of (Eq).

(t)dt = oo, then y'(t) is oscillatory for any

ProOOF. If y(t) oscillates, then there is nothing to prove. If y(t) is
ulimately positive, then so is y(g(t)). Suppose y'(t) > 0 for all large t.

Then
r()]y ()] (t)
ly(g(t)1P~1y(g(t))

w(t) =

satisfies the equation
Blle@° "y (9O)g'(®) _
( < )

w0 = =20 == Ty (0)

Integrating the above inequality, we obtain

xT

w(z) < w(a) —/ p(t)dt.

«

It follows from [* p(t)dt = oo that y'(t) < 0 for all large ¢, which is a
contradiction. Suppose now 3’ (t) < 0 for all large ¢. It is easy to see that
i > p(t)dt = oo implies that there exists a positive constant T such that

t
/ p(t)dt >0
T
for t > T. Hence, we have

/ p(s)(w(g(s))1Py(g(s)))ds

T
t

(6) — ly(g()Py(g(®)) /T p(s)ds

—ﬁ/ )Pt '(g(s))g'(s)/ p(r)drds > 0, t>T.

T

Now integrating equation (E;) and using (6), we have

r®ly 1“1y () < 1Dy (T)* 'y (T) = |e]* e <0,

ie.,

- My (M)~ 1y'(T)
- r(t)

ly' (1“1 (1) <0,
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thus
y'(t) <er=(t)<0

for some ¢ < 0. Integrating it from 7" to ¢t (> T'), we obtain

y(t) -y e [ 7 (s

T

Thus y(t) < 0 for ¢ large enough, which contradicts the fact that y(¢) is
positive for large ¢t. This completes the proof.

Ezample 8. Let y(t) be a solution of

d sint B
7 (y') + P(y) =0

2 —sint

for t > 0, where ¢(u) = |u|* tu, then, by theorem 7, 3/(t) is oscillatory

because
*  sint
/ St
2 —sint
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