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Oscillation criteria for second order half-linear
differential equations

with functional arguments

By JANN-LONG CHERN (Chung-Li), WEI-CHENG LIAN (Chung-Li) and

CHEH-CHIH YEH (Chung-Li)

Abstract. Oscillation criteria for the second order half-linear differential equa-
tions with functional arguments of the form

(∗) [r(t)|y′(t)|α−1y′(t)]′ + p(t)f(y(t)), y(g(t))) = 0,

are established,where α > 0 is a constant and g(t) → ∞ as t → ∞. These results
exhibit a surprising similarity in the oscillatory behavior existing between (∗) and the
corresponding differential equation

y′′(t) + p(t)f(y(t), y(g(t))) = 0.

1. Introduction

Consider the following three second order differential equations

[r(t)|y′(t)|α−1y′(t)]′ + p(t)f(y(t)), y(g(t))) = 0,(E)

[r(t)|y′(t)|α−1y′(t)]′ + p(t)|y(g(t))|β−1y(g(t)) = 0,(E1)

[r(t)|y′(t)|α−1y′(t)]′ + λp(t)|y(t)|α−1y(t) = 0,(E2)

where

(a) p, g ∈ C([t0,∞);<) for some t0 ≥ 0 and lim
t→∞

g(t) = ∞;

(b) r ∈ C1([t0,∞), (0,∞));
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(c) f ∈ C(<×<,<), f(x, y) has the same sign of x and y when they have
the same sign, that is,

f(x, y)
{

> 0 if x > 0, y > 0,

< 0 if x < 0, y < 0;

(d) α and β are positive constants.

Throughout this paper, we define

π(t) :=
∫ ∞

t

(r(s))−
1
α ds, t ≥ t0.

In [1], Elbert established the existence and uniqueness of solutions
to the initial value problem for equation (E2) on [t0,∞). Note that any
constant multiple of a solution of (E2) is also a solution of (E2). A nontriv-
ial solution is called oscillatory if it has arbitrarily large zeros; otherwise
it is said to be nonoscillatory. The equation (E2) is nonoscillatory [resp.
oscillatory] if all of its solutions are nonoscillatory [resp. oscillatory].

Surprisingly, some similar properties between equation (E2) and the
linear equation

(E0) (p(t)y′)′ + q(t)y = 0, t ≥ 0

have been observed by Elbert [1, 2], Mirzov [9, 10, 11], Kusano and
Naito [4], Kusano and Yoshida [5], Kusano et al [6], Li and Yeh [7, 8].
For example, Sturmian theory for (E0) has been extended in a natural way
to (E2) by Elbert [1], Li and Yeh [7]. They showed that the zeros of two
linearly independent solutions of (E2) separate each other. If α = 1 and
r(t) = 1, then Travis [12] and Yeh [13] established some sufficient condi-
tions on the oscillation of (E). Travis [12] also gave a sufficient condition
on the oscillation of y′(t) for any solution of (E2). For the other result, we
refer to Kusano and Lalli [3].

The purpose of this paper is to extend the results of Travis [12] and
Yeh [13] to the equation (E) by using a result (lemma 3 below) of Li and
Yeh [7].
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2. Oscillations of Equation (E)

Theorem 1. Let π(t0) = ∞; and

(C1) there exist a constant k and a function h(t) ∈ C([t0,∞),<) such that

h(t) ≤ g(t) and 0 < k ≤ h′(t) ≤ 1

(C2) there exist a constant M > 0 such that |y| ≥ M implies

lim inf
|w|→∞

| f(y, w)
|w|α−1w

| ≥ ε > 0

for some ε > 0.

(C3) p(t) ≥ 0 and lim sup
t→∞

A(t, t0)−λ
∫ t

t0
A(t, s)λp(s)ds = ∞,

where A(t, s) =
∫ t

s
(r(u))

−1
α du; λ > 1.

Then (E) is oscillatory.

Proof. Assume the contrary. Then (E) has a nonoscillatory solution
y(t). Without loss of generality, we may assume that y(t) > 0 on [T,∞)
for some T ≥ t0. It is easily to verify that y′(t) > 0 for large t. Let

w(t) =
r(t)|y′(t)|α−1y′(t)
|y(h(t))|α−1y(h(t))

.

Then w(t) satisfies

(1) w′(t) = −p(t)
f(y(t), y(g(t)))

|y(h(t))|α−1y(h(t))
− α

y′(h(t))
y(h(t))

h′(t)w(t),

for t ≥ T .
Since y′(t) > 0 for large t, lim

t→∞
y(t) exists either as a finite or infinite

limit. If lim
t→∞

y(t) = b is finite, then

lim
t→∞

f(y(t), y(g(t)))
|y(g(t))|α−1y(g(t))

=
f(b, b)

bα
> 0.

If lim
t→∞

y(t) = ∞, then, by (C2), we have that

f(y(t), y(g(t)))
|y(g(t))|α−1y(g(t))

≥ ε > 0
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for all large t. Let ε1 = min{ε, f(b,b)
2bα }. Since y(t) is increasing for large t,

we have that

p(t)
f(y(t), y(g(t)))

|y(h(t))|α−1y(h(t))
≥ p(t)

f(y(t), y(g(t)))
|y(g(t))|α−1y(g(t))

≥ ε1p(t),(2)

and

α
y′(h(t))
y(h(t))

h′(t)w(t) ≥ αkr
−1
α (t)w

1+α
α (t),(3)

for all large t. It follows from (1), (2) and (3) that

(4)
w′(t) ≤ −ε1p(t)− αkr

−1
α (t)w

1+α
α (t)

≤ −ε1p(t) ≤ 0

for t ≥ T ,where T is large enough. This implies
∫ t

T

Aλ(t, s)w′(s)ds ≤ −ε1

∫ t

T

Aλ(t, s)p(s)ds.(5)

Since
∫ t

T

Aλ(t, s)w′(s)ds = λ

∫ t

T

Aλ−1(t, s)r
−1
α (s)w(s)ds− w(T )Aλ(t, T ),

we get, by (5)

ε1A
−λ(t, t0)

∫ t

T

Aλ(t, s)(s)p(s)ds ≤ w(T )
{

A(t, T )
A(t, t0)

}λ

≤ w(T ).

Hence

lim sup
t→∞

ε1A
−λ(t, t0)

∫ t

T

Aλ(t, s)p(s)ds ≤ w(T ),

which contraticts condition (C3). Thus, our proof is complete.

We say that (E2) is strongly oscillatory if (E2) is oscillatory for every
λ > 0. In order to discuss the next two theorems, we need the following
three lemmas:

Lemma 2 (Kusano et all. [6]).
If

∫∞(r(s))
−1
α ds = ∞, then (E2) is strongly oscillatory if and only if

(C4) p ≥ 0 is integrable on [t0,∞) and lim sup
t→∞

Aα(t, t0)
∫∞

t
p(s)ds = ∞,

where A(t, t0) is defined as in Theorem 1.
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Lemma 3 (Kusano and Natio [4]). If
∫∞(r(s))

−1
α ds < ∞, then

(E2) is strongly oscillatory if and only if
(C5) p ≥ 0 is integrable on [t0,∞),

∫∞
t0

(π(t))α+1p(t)dt < ∞, and

lim sup
t→∞

π−1(t)
∫ ∞

t

(π(s))α+1p(s)ds = ∞.

Lemma 4 (Li and Yeh [7]). Equation (E) is nonoscillatory if and

only if there is a function ω ∈ C1[T,∞) for some T ≥ t0, satisfying

ω′(t) + p(t) + αr−
1
α (t)|ω(t)|α+1

α ≤ 0.

Theorem 5. Let (C1) and (C2) hold and π(t0) = ∞. If condition

(C4) holds, then (E) is oscillatory.

Proof. Assume the contrary. Then (E) has a nonoscillatory solution
y(t). With loss of generality, we may assume that y(t) > 0 on [T,∞) for
some T ≥ t0. Let

w(t) =
r(t)|y′(t)|α−1y′(t)
|y(h(t))|α−1y(h(t))

.

As in the proof of theorem 1, we have

w′(t) + ε1p(t) + αkr
−1
α (t)w

1+α
α (t) ≤ 0.

If u(t) = kαw(t), then

u′(t) + ε1k
αp(t) + αr

−1
α (t)u

1+α
α (t) ≤ 0.

It follows from lemma 4 that

[r(t)|u′(t)|α−1u′(t)]′ + ε1k
αp(t)|u(t)|α−1u(t) = 0

is nonoscillatory. However, this contradicts the fact that (E2) is strongly
oscillatory (by Lemma 2).

Similiarly, using Lemma 3 and Lemma 4, we can prove the following

Theorem 6. Let (C1) and (C2) hold and π(t0) < ∞. If condition

(C5) holds, then (E) is oscillatory.



214 J.-L. Chern, W.-Ch. Lian and Ch.-Ch. Yeh

3. Oscillation of the derivative of a solution of (E1)

Theorem 7. Assume g(t) is differentiable, g′(t) ≥ 0, and∫∞
p(t)dt = ∞. If

∫∞
r
−1
α (t)dt = ∞, then y′(t) is oscillatory for any

solution y(t) of (E1).

Proof. If y(t) oscillates, then there is nothing to prove. If y(t) is
ulimately positive, then so is y(g(t)). Suppose y′(t) > 0 for all large t.
Then

w(t) =
r(t)|y′(t)|α−1y′(t)
|y(g(t))|β−1y(g(t))

satisfies the equation

w′(t) = −p(t)− w(t)
β[y(g(t))]β−1y′(g(t))g′(t)

|y(g(t))|β−1y(g(t))
≤ −p(t).

Integrating the above inequality, we obtain

w(x) ≤ w(α)−
∫ x

α

p(t)dt.

It follows from
∫∞

p(t)dt = ∞ that y′(t) < 0 for all large t, which is a
contradiction. Suppose now y′(t) < 0 for all large t. It is easy to see that∫∞

p(t)dt = ∞ implies that there exists a positive constant T such that
∫ t

T

p(t)dt ≥ 0

for t ≥ T . Hence, we have

(6)

∫ t

T

p(s)(|y(g(s))|β−1y(g(s)))ds

= |y(g(t))|β−1y(g(t))
∫ t

T

p(s)ds

−β

∫ t

T

(y(g(s)))β−1y′(g(s))g′(s)
∫ s

T

p(r)drds ≥ 0, t ≥ T.

Now integrating equation (E1) and using (6), we have

r(t)|y′(t)|α−1y′(t) ≤ r(T )|y′(T )|α−1y′(T ) := |c|α−1c < 0,

i.e.,

|y′(t)|α−1y′(t) ≤ r(T )|y′(T )|α−1y′(T )
r(t)

< 0,
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thus

y′(t) ≤ cr
−1
α (t) < 0

for some c < 0. Integrating it from T to t (≥ T ), we obtain

y(t)− y(T ) ≤ c

∫ t

T

r
−1
α (s)ds.

Thus y(t) < 0 for t large enough, which contradicts the fact that y(t) is
positive for large t. This completes the proof.

Example 8. Let y(t) be a solution of

d

dt
φ(y′) +

sin t

2− sin t
φ(y) = 0

for t ≥ 0, where φ(u) = |u|α−1u, then, by theorem 7, y′(t) is oscillatory
because

∫ ∞ sin t

2− sin t
dt = ∞.
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