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On the automorphism groups of certain wreath products

By C. H. HOUGHTON (Manchester)

§ 1. Introduction

The problem considered here is the determination of the structure of the auto-
morphism group of the standard wreath product') W of two groups A and B. B. H.
NeumMANN and HANNA NeuMANN have shown (cf. [1]) that the automorphism
group of W contains subgroups isomorphic to the automorphism groups of 4 and
of B, while an unpublished result of PETER M. NEUMANN states that except when
B is of order 2 and A is a dihedral group of order 4m + 2 or is of order 2, the
base group is a characteristic subgroup of the wreath product. Using these
results, one can describe completely the way in which the automorphism group of
the unrestricted wreath product is built up from certain distinguished subgroups
whose choice arises naturally from the way in which the wreath product is formed
from its component groups.

Beyond that, the automorphism group of W naturally depends on the nature
of the groups 4 and B. In the case when A is abelian and B is finite and cyclic, the
automorphism group of W turns out to be soluble of length at most three. Using
a method suggested by the work of DAYkIN [2], the automorphism group can be
described completely when both 4 and B are finite and cyclic. We shall give no more
than an indication of the method, which involves tedious computation, but only
describe the result. In the particular case where 4 and B are both cyclic. of orders
2" and 2* respectively, the automorphism group is itself a 2-group and therefore
nilpotent. When B is just a 2-cycle and A is of order 27 with r = 1. the class can also
be computed without much trouble and shows the existence of a 2-group of class
r+ 1 whose automorphism group is itself a 2-group and of class r.

This paper arose out of a thesis presented to the University of Manchester for
the degree of Master of Technical Science. I thank my supervisors Dr. HANNA
NEUMANN and Dr. James WieGoLp for their continual help and encouragement
while | was doing this work and in the preparation of this paper.

§ 2. Preliminaries

We denote the order of a set S by S.. If H is a subgroup of G. we write H=G
and. when H is normal in G. H<1 G. The commutator i~ 'k~ 'hk of two elements
h. k of a group G is denoted by [, k]. We write Aut (G) for the automorphism group
of a group G.

') Throughout this paper we shall refer to the standard wreath product as the wreath pro-
duct: no other wreath product is considered.
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The wreath product of two groups 4 and B, which are assumed throughout
this paper to be non-trivial, is defined as follows. Let F, be the group of functions
on B taking values in 4 with multiplication of /. g € F, defined by

fa(x) = f(x)g(x) for all x€B.
Then F, is the unrestricted direct product of B/ isomorphic copies of A. The sub-
group F, of F,, consisting of all those f<€ F, such that f(x)=1 for all but a finite
number of x¢€ B, is the corresponding restricted direct product. We denote both
these groups by F, distinguishing between the unrestricted and the restricted direct
product when necessary.

If f¢ F and bh¢ B, we define f*< F by
ft(x)=f(xh-1) for all x¢B.
The group of automorphisms of F defined by
f—s* for all f€F,

is isomorphic to B and we shall identify it with B. The wreath product W of A4 and

B is defined as the splitting extension of F by this group of automorphisms: that is,
W is generated by B and F with the relations

b='fb=/f"* for all h€ B and f< F.

If Fis unrestricted, we call W the unrestricted wreath product of 4 and B. written
A Wr B. If F is restricted. W is called the restricted wreath product of 4 and B.
written A wr B. We shall refer to F as the base group of W. As mentioned in the
introduction, we have the following result.

2. 1. Except when B has order two and A is a dihedral group of order 4m -2
or is of order two, the base group is characteristic in W.

The subgroup of F consisting of all constant functions is the diagonal subgroup.
It is necessarily trivial when W is restricted and B is infinite. Otherwise it is clearly
isomorphic to A. Since we are naturally interested in the characteristic subgroups
of the wreath product. the following result is important to us.

2. 2. The centre of W coincides with the centre of the diagonal subgroup of W.

This is easily confirmed: cf. also BAUMSLAG [3]. To complete the preparations.
we determine the derived group W’ of W in the case when 4 and B are abelian and
W is restricted. Clearly W' lies in the base group as W/ F is isomorphic to B and so
is abelian. Now we have the following result.

2.3. If A and B are both abelian and W is their restricied wreath product then a
Sfunction f€ F belongs 1o W’ if and only if the product of its non-trivial values is the
unit element of A.

Proor. To prove the necessity of the condition we need only show that it is
necessary for the generators of W’ because 4. and hence F, is abelian. If /< F is
such a generator then f=[hg. ¢/] for some b, c€B, g, h€ F. So

f=g=~1g= ()14,
and, as is quickly checked, the product of its non-trivial values is 1.
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Suppose conversely that f< F and satisfies the condition of the theorem. For
each non-trivial b€ B for which f(b) = | we define g, < F by:

g,(1) = f(b), gyx) =1 for non-trivial x< B.

=11 (gh(gy) "= ]] [b. gy '],

where the product is taken over all non-trivial b« B for which f(b) = 1.
A consequence of this theorem is that, if 4 and B are finite abelian groups.
then |W’| = |A|BI-1,

Then,

§ 3. The automorphism group of the unrestricted wreath product

In view of 2. 1., we assume from now on that when B has order 2. 4 is not
of the type specified there. so that the base group is characteristic in the wreath
product. In [l], extensions of automorphisms of 4 and B to automorphisms of
their wreath product W were constructed as follows.

3.1, If x€ Aut(A), we define o* < Aut(W) by (bf " =bf*" for all b< B, f€ F,
where [*°(x) = (f(x))* for all x< B.

The group A* of all such automorphisms is isomorphic to Aut(A4).

3. 2. If BEAut(B). we define f* € Aut(W) by (bf Y™ =b*f* for all bé B, [€ F.
where f#*(x) = f(x*"") for all x ¢ B.

The group B* of all such automorphisms is isomorphic to Aut(B8). It follows
easily from these definitions that A* and B* permute elementwise in the automorphism
group of W. In the next theorem we describe the structure of this automorphism
group, assuming from now on that W is unrestricied.

Theorem 3. 3. (a) The automorphism group?) of the wreath product W of two
groups A and B can be expressed as a product,

Aut(W) = KI,B*,

where (1) K is the subgroup of Aut(W) consisting of those automorphisms which
leave B elementwise fixed, (2) 1, is the subgroup of Aut(W') consisting of those inner
automorphisms corresponding to transformation by elements of the base group F.
(3) B* is defined as in 3. 2.

(b) The group K can be written as A* H, where (8) A* is defined as in 3. 1., (5) H
is the subgroup of Aut(W) consisting of those automorphisms which leave both B and
the diagonal elemeniwise fixed.

(¢) The subgroups A*HI,, HI,B*, HI,, and I, are normal in Aut(W) and
Aut(W) is the splitting extension of A* HI, by B*. Furthermore, A* intersects HB*
trivially.

) The automorphism group described here does in fact occur in the cases excluded in 2. 1.,
the whole automorphism group being an extension of this by a 2-cvcle. as is well known for
C:W.Cy=D,.
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Proor. For the proof we write L. = Aut(W) for convenience.

Proof of (a). Let « be an automorphism of W, If h< B then »* =b" (mod F) for
some b€ B. Since W is a splitting extension of F by B, the mapping fi: B — B defined
by b# =b', all b€ B, is an automorphism of B. Let "2 B* be the extension of f~!
to an automorphism of W by the construction 3. 2. Then #**=h (mod F) and so
b='hP2¢ F. We denote this function by f,. so that for each h¢ B we have a function
fo€ F given by b#* = bf,. Now we define a function?) g€ F which takes, at each
argument x € B, the same value as the function f takes at x. that is g(x) =/f(x) for
each x. Then for each b€ B.

b-'g="bg=(g"'g and ((g")~'g)(x)=(g(xh=")) 'g(x)
for x£B. At xb~ ', g takes the same value as (xb=')~'(xb~')#= But this is

by~ l_\.ﬂ':(hﬂ'fx}-— ] (-\" l_\.ﬂ'x)b' 'h(h#'a}— l.
So
g(xb =) =£ () fp(x) "' =g(x)(fp(x) ",

and the value of b~ 'g~'bg at x is the same as the value of f,. Thus #* = g~ lhg,
If i€/, is the inner automorphism defined by w! = gwg~! for all wé W, then b# 2 = p
and so f'%i€ K and we have L =K/, B".

Proof of (b). If f€ F then f'is in the diagonal D if and only if /* =/ for all h< B.
Now if €K, b€ Band f€ F,

(/P =(b='1by=b""f1b=(f")",

so the diagonal is mapped onto itself by y. and 7 restricted to D is an automorphism
70 of D. As W is unrestricted, the diagonal is isomorphic to 4 under the mapping
taking an element of D into its value in A. So y, corresponds to an automorphism
7, of A defined by (f(x))" = f(x) for all fe D, x€B. If "€ A* is the extension
of 7! to an automorphism of W by the construction 3. 1. then 3’y leaves D element-
wise fixed and therefore lies in H. So K=A4"H.

Proof of (c). A simple argument shows that the automorphisms in B* leave
the diagonal elementwise fixed. One can then check that the subgroups A*HI, .
HI,B*. HI, and I, consist respectively of all those automorphisms with the following
properties:

A*HI, : for some gcF, b—~g~'hg for all he B:

HI,B* : for some gc F, f—g~"fg for all feD:
HI, : for some g€ F, b—-g-'hg for all be B

and f-g-'/g for all feD;
I : for some g<F, w—-g 'wg for all we W,

It is immediate from the first of these statements, together with 3. 2., that
A*HI, 7' B* =1. The proofs that the subgroups mentioned above are normal in

*) This function may have infinitely many non-trivial values even if the functions f, do not.
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L and of the assertions about A* are now straightforward computations and will
be omitted.
We now have two series of normal subgroups of Aut(W):

Aut(W) = KILB*2KI,2HI, 21, 21,
and
Aut(W) = A*HI,B* 2HI,B* 2HI, 21, 2 1.

Let / be the group of inner automorphisms of the wreath product and let /, be the
subgroup consisting of those which correspond to transformation by elements of
B. If B is abelian then /, lies in / and we have:

Since the centre of the wreath product is the centre of the diagonal, we know
the structure of /,. As B* is isomorphic to Aut(B8). we now turn our attention to the
subgroup K. We know that if y¢ K, he B, and f< F, then (,;°)'=(f")". Suppose
now that z is an automorphism of the base group F such that (f*)*=(f*)" for all
he B, f€ F. We can extend this to an automorphism 3y K by defining (bf) =bf*
for all h¢ B, f€ F. Thus we have the following.

3. 4. The group K is isomorphic to the group of those automorphisms of the base
group which commute with the inner automorphisms induced by elements of B.

We also denote this group by K without risk of confusion.

§ 4. The group Aut (1) when 4 and B are finite and cyclic

When A and B are cyclic, the automorphism groups 4* and B* are well known.
So the results of the last section show that it is only the group K which has to be
determined. To start with, we only assume that A is ¢yclic and B is finite abelian.
Then A has a representation as the additive group of a ring R, namely the ring of
integers if A is infinite or the ring of integers modulo 4| if A is finite: in the latter
case we identify each residue class modulo |4 with the least positive integer it con-
tains. If 4 is ecner'm,d by a then we define f, € F by

fo(D=a, folb)=1] for all non-trivial h< B.

Then every element f of the base group F has a unique representation of the form
=TT (™ where r(b)c R
bEB

Let S be the group ring of B over R. Then we can represent the base group faith-

fully as a one-dimensional S-module as follows. If s = > r(b)bc S. where bc B
hER

and r(bh) < R then we define fy to be /] (_)'3)"'”.
heB
If £ is the ring of those endomorphisms x of the base group which commute
with the group of automorphisms induced by elements of B then x € E is completely
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determined by the image /i of f,. Now we construct a mapping ¢ between £ and S
which one can easily check to be a ring isomorphism: if € £ and f§ = f5, where
s€ .S. then we define 0 by putting 00 =s. In this set up. K is the multiplicative group
of invertible elements of £, so it is isomorphic to the multiplicative group of inver-
tible elements of S, which is abelian. Thus we have the following.

4. 1. When A is cyclic and B is finite and abelian, then the group K (cf. 3.4.)is
abelian.

Combining this with 3. 3 (a) we get the next theorem.

Theorem 4. 2. The automorphism group of the wreath product of a cvelic group by
a finite abelian group is soluble of length at most three.

Now we specialise further and consider the group K arising when A is a cycle
of order m and B is a cycle of order n: we shall denote it by K(m, n). That is, K(m, n)
is the multiplicative group of invertible elements of the group ring of a cycle of
order n over the ring of integers modulo m.

If m is written as a product of prime factors m=p;i'...p;". where p,. ....p, are
distinct, one can show without difficulty that K(m. n) is isomorphic to the direct
product of the groups K(pi,n) for i=1,...,1. The determination of the groups
K(p'. n) can be achieved by applying standard methods of ring theory and vector
space theory. The details are tedious and complicated and so we merely state the
results.

4.31. If p is a prime and n = p*h, where h is not divisible by p. then the group
K(pr. n) is the direct product of K(p, h) and a p-group P.

To describe the two factors, let ¢ be Euler’s function and. for an integer .
let M (d: p) be the order of p modulo d.

4. 32. The group K(p. h) is the direct product of > q(d)/M(d. p) cyelic groups.
i
there being ¢ (d) M(d. p) factors of order pM“? — 1 for each divisor d of h.

4. 33. The group P contains a subgroup P, whose factor group PP, is the direct
product of h(p—1) cycles of order p* and hp*=*='"(p—1)* cycles of order p*, for
u=1,....5 1. When p =2, P, is the direct product of n cycles of order p"~': when
p=2., P, is the direct product of n —o cycles of order 2"~ ', ¢ cycles of order 2"~?

and o cycles of order 2, where a = > g (t}),’M (d. 2).
d|h

In conjunction with Theorem 3. 3. this immediately gives the first part of the
following result.

Theorem 4. 4. The automorphism group of the wreath product of a cycle of order
27 by a cycle of order 2 is a 2-group and therefore nilpotent. When s=1 and r = 1.
its cluss is r.

Proor. To prove the second part of the theorem we first note that the class of
the wreath product is r+ 1, (cf. LieBeCcK [4]). Thus the class of its automorphism
group is at least . Now the group of inner automorphisms corresponding to transfor-
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mation by elements of the base group is cyclic of order 27, generated by 4, sav. A simple
calculation shows that the derived group of the automorphism group lies in the
group generated by 62 and hence the nilpotency class is exactly r.
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