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General algebraic dependence relations

By V. DLAB (Khartoum)

§ 1. Introduction

Many papers have been dedicated to the problem of an axiomatization of a
dependence relation in mathematics. The methods of solutions of this question
- frequently given by the purpose for which the related axiomatic system is construc-
ted — differ often already in the choice of primitive undefined terms (even if the
systems are sometimes equivalent). The binary relation ,.an element (or a set) depends
on a set”™") is the primary object for one of the first axiomatic systems, for the sys-
tem of B. L. VAN DER WAERDEN [28] and for closely related systems of O. TEICH-
MULLER [27], G. PICKERT [22], A. KErTESZ [12], M. N. BLEICHER and G. B. PRESTON
[2] and K. G. JOHNSON [7]: axiomatic systems based on the concept of an indepen-
dent (or a dependent) set are introduced by H. WHITNEY [29], T. Nakasawa [19].
[20], [21], O. Haupr, G. NOBELING and CHRr. Pauc [8] and R. Rapo [23] and that
based on the concept of a rank function by H. WHITNEY [29] and R. Rapo [24]:
an axiomatization of a dependence relation in terms of orderings (of lattices) was
carried out by S. MACLANE [14], in terms of closure operations (of exchange struc-
tures) by N. Boursaki [3] and J. ScumipT [25] and in terms of algebraic operations
(of abstract algebras) by E. MArczEwsKI [15], [16], [17].

Besides other questions, the problem of an axiomatization of a dependence
relation comprises the two following important points:

(i) to cover various particular concepts of dependence (as linear dependence
in vector spaces, algebraic dependence in the theory of fields, dependence in abelian
groups etc.) and

(i1) to establish a general invariant — rank or dimension of the structure under
consideration.

Therefore, in order to compare different axiomatic systems, the following rough
criterion might be suggested: The success of the alleged axiomatic system in satisfy-
ing these two requirements (i) and (ii). From this point of view, the systems listed
above have a common feature: those of them, which enable to fulfil the condition
(i1), are, up to slight modifications (including the extension to infinite sets), equiva-
lent to the vAN DER WAERDEN's axiomatic system in [28]. In particular, the corres-
ponding dependence relations satisfy the third vAN DER WAERDEN'S axiom stating
the transitive property of the introduced (linear) dependence. Thus, no one of them
covers the important dependence relation in abelian groups studied independently
by T. SzeLk [26] and the author [4] and exploited extensively in the L. FUCHS™ mono-
graph [6].

'} The formulation in terms of sequences instead of sets is often used.
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The present paper represents an attempt to introduce a dependence relation
generalizing the previous concepts and, especially, including the group dependence.
It might be understood as a solution of the problem indicated by T. SZELE in [26].
The primitive notion is the relation ,an element depends on a set”, i.e. a binary
relation between the given set and its power-set. This relation determines uniquely
the class of all the independent sets: the converse does not hold, for two different
relations can correspond to the same class of independent sets. In this sense. our
approach is a priori more general than that involving another choice of the primitive
term. These and some related questions will be the subject of a separate paper.

The definition of a GA-dependence structure — a set S whith a GA-dependence
relation, i. e. a binary relation 6 £ 5 >AS between S and its power-set 1.5 satisfy-
ing six conditions (i) — (vi) — is given in § 2. Besides the first two conditions describ-
ing the behaviour of so-called neutral and singular elements and expressing the fact
that our dependence is a property of finite character (and guaranteeing the existence
of maximal independent sets), respectively, the other are related to those of vaN
DER WAERDEN [28]. Thus, (iii) together with (vi) correspond to the first and (iv)
is a slight generalization of the second VAN DER WAERDEN's postulate. The most
typical feature of our axiomatic system consists in the absence of the ,.transitive
axiom™; nevertheless. there is a weaker substitute (v) of it. This condition is of an
existential character: but, we shall see that all our results will be indifferent to the
particular choice of the canonic subset 5S¢ (Remark 7. 20). As a consequence of the
weak form of (v), the operation X —~cl(X) defined in § 7 is not idempotent (comp.
J. ScumipT [25]): the corresponding least idempotent closure operation (see e. g.

G. BIRKHOFF [1]) X-CI(X) = U cl"™(X) giving, in general, only a very rough
n=1

information on the situation is for our study nearly useless (for the related questions

in abelian groups see the author's paper [5]).

Whilst the axiom (i)—(vi) are presented in a weak form suitable for proving
whether a given relation is a GA-dependence relation or not, § 4 contains an equi-
valent, formally stronger, system (1)—(6) designed for the further study. The next
§ 5 shows that the postulates of both axiomatic systems are independent. Besides,
Theorem 3. 3 of § 3 states that the axiom (vi) is not essential in our problem. In
fact, reading ,,an element x either depends or belongs to a set X' instead of ..x
depends on X" one can, modifying the respective formulations, carry out the whole
theory without (vi).

Some properties of independent sets and, in particular, the invariance of the
concept of the rank (defined as a cardinality of a certain maximal independent
system) are derived in §§ 6 and 7. Lemmas 7.7 and 7.9 (applied in the proof of
Lemma 7. 12) appear here as a generalization of the STEINITZ's Exchange Theorem.
Theorem 7. 15 states the basic property of the rank. § 8 deals with decompositions
and compositions of GA-dependence structures preserving ,linear property” of the
rank function. Finally, in the last § 9 some applications are discussed.

Throughout the paper, capital letters stand for sets, small letters for their
elements and the gothic ones for families of sets. The symbols v, n and ™ denote
the set-theoretical union, intersection and difference, respectively, © denotes the
empty set and card (X') the cardinality of X. The logical operations of conjunction,
disjunction, implication, equivalence, universal and existential quantifications are



326 V. Dlab

denoted by A, v, —, -+, ¥ and =, respectively. Though not exclusively. we shall
use this notation for the sake of brevity.

§ 2. GA-dependence structures

Let S be a non-empty set and o a binary relation defined between S and its
power-set ‘'S, i. e. a subset of the cartesian product S S:

0 SX PS.2)

Denote by S the subset of S of all the d-neutral and by S3 the subset of all the
d-singular elements defined by

M) NESY - xESAVX (XEBS—[x, X]46)
and
) XESS e xESAVX (XEPS—[x, X]€0),
respectively. Clearly,
S¥nSi=0.

Putting N

S,=S\(SYuS)),
we have

S=S,uS)uSss

with mutually disjoint summands.
Further, the symbol 35 ; denotes the family defined by

r,l

() 1¢d5 , —~T€BSAYx (x€l—[x, I (x)]¢d);
morcover, pl.lt
() Js,6=35,5n BS,:

in particular, @ € 3¢ ;< Jg 4. Finally, by .#5 and .# ¢ we denote the family of all the
finite subsets of § and S, respectively: assume @€ F (< F5.)
Now, we are ready to introduce the basic definition.

Definition 2. 1. The pair (S. &) is said to be a GA-dependence structure and

o a GA-dependence relation (general algebraic dependence relation) defined on S
if the following 6 conditions are satisfied:

(1)) YESAXEPS—([x, X]€d =[x, X S]€d):

(i) XESAXEPSA[x, X]€0—-AF(FSXAFEF Alx, F]£0):

?) The elements of § < LS will be denoted, in usual way, by [x, X] with x€S and YT §.
*) As far as there is no danger of confusion, we shall use the simpler notation

& o

SY 55, 5,3, 3, F and F instead of S),S3. 55, 95,5, 5. 5. Fs aud F5_ respectively.



General algebraic dependence relations 327

(i) XESAFEFAFSXCSSA[x, Fl€o-—-[x, X]€0:

(iv) XESAYESAIEF AIAxZyaxdIaydin
Alx. Tu(W]EOA[X 40—~ [y. Tu(x)]cd:

(v) 3SS[SSSSA{xeS\S§—~ (163 PSS A [x. 11€8)} A
AXESAIEF NIACEF NINPSEAXETA[x. ClEdA
ATY(yeCAyal—[y, 1]1€6) =[x, 1€d}]:

(vi) x€85-—-[x, (x)]€6.

The elements of &.3 and
©) ‘f I PSS 4

are said to be d-independent sets, o-independent systems and dS-canonic systems,
respectively.

The subset S S is not, in general, unique. Let us denote by S5 ;%) the family
of all the subsets of S having properties of S¢ stated in (v): call them canonic subsets.
We shall see in § 7 that S5 ; has minimal and maximal elements.

The family D5 of all the possible GA-dependence relations on a fixed set S is
(partly) ordered: &’ = 6" means simply that " S4” in S§> LS. One can deduce from

=" easﬂ\ the inclusion /5 ;. 2 Is ;.. For given subsets AC S and BC S. denote
b} D3 4% L5 % pand, in the case that AnB = O, T , g the subfamilies of those
GA-depcndeme relations & which satisfy the equalitics Sy¥=A,S;=Band Sf=4
with S3 = B. respectively. Being subfamilies of T, they are again (partly) ordered.
For two GA dependencc relations 4y, 4.8 of Ts. 48 such that 8} 5=04s we have

besides «Is L S*s s also Jg .;“,._ ' s Kea In particular, the following GA-
dependence relations 00} and 9!}, are the least and the greatest elements of Tg , 5,
respectively:

XEAAXERS—[x, X160 A[x, X165 5;

XEBAXE ‘.].:S—»[\ ,\]Cb,‘ LAl X1ed s
xESN(AUB)AXEPRS—([x, X1€85 8 ~ x€X) A([x, X] €% s — X £0).
The GA-dependence relations of these types will be called zero- and unit-

GA-dependence relations, respectively. The zero- GA-dependence relation o':’:,
is evidently the lea-st and the unit- GA-dependence relation 6:,;;. the greatest element
of T4. Both 0— and oﬁs- are particular cases of what we shall call trivial GA-

dependence relanom i.e. of GA-dependence relations d such that S)u S3=S5:
we shall exclude them from our further consideration.

. & M - al ~
4) Again, we shall usually write briefly s ¢ and & instead of S‘s Lsg and -5 s Tres-
pectively.
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Finally, let us remark that having constructed 6% and 6%} we have shown
simultaneously that our axiomatic system (i)-—(vi) is consistent.
Definition 2. 2. By a GA-dependence table T(S, o) of a structure (S, d) we
shall mean a rectangular array of the form
- Xp .

T(S, 8) = Lole e Hagiv 5o5

where x, runs through all the elements of S, X, through all the subsets of § and
a,q is equal to 0 or 1 according to as [x,, Xz] 0 or [x,, X;] €0, respectively.

The GA-dependence table T(S, d) of (S, d), being dependent on the ordering
of S and RS, is not uniquely determined. But, if T'(S, ¢) and T7(S. d) are two diffe-
rent GA-dependence tables of the same GA-dependence structure (S; 0), then
T'(S, 0) can be brought by suitable permutations of its rows and columns to the

form of T"(S, ). Because of the properties of a GA-dependence relation resulting
from (i)—(vi) the forms of GA-dependence tables are rather special. Nevertheless,
we shall find GA-dependence tables very convenient to define a GA-dependence

relation on a given set S (especially, for a finite set S).

REMARK. 2. 3. Let us notice that (ii) and (iii) can be expressed together in the
form

XESAXEPRS—+{[x, X]€d « IF(FEXAFEF A[x, F]€0)}.
On the other hand, assuming (ii), (iii) can be formulated as follows:
(i) xESAXSYS SA[x, X]€d—~[x, Y]<0:

for, by (ii) and (iii)
XESAXSYSSA[x, X]€o—~

ESAIF(FEF AFSXSYSSA[x, FI€d) —[x, Y]€0.
Then, the axioms (i) and (iii)" are obviously equivalent to the following two axioms

(i) XESAXEPSA[x, X]€d-[x, XnS]€d
and
(i) XESAXSYSSA[x, X]€8~[x, Y]€4.

Of course, there are many other possibilities how to formulate the first three
axioms to obtain an equivalent system: e. g. we can restrict (i) by the condition

XEF to the form

(i)) XESAXCEF —([x, X]€d—[x, XN S]€d)
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if simultaneously a weaker condition X €S instead of X' 1S is putin (ii)%). The
related question of bringing the whole axiomatic system (i)—(vi) to a formally stronger
form will be considered in § 4.

§ 3. Axiom (vi) and GA-dependence relation o

In this section, we shall show that the axiom (vi) is not essential in our study.®)
Our aim is to define the d-rank of the set S as the cardinality of certain elements

(maximal J-canonic systems) of 3. In fact, it will be the maximal cardinality of
elements of 3. Theorem 3. 3 together with Theorem 3. 2 imply that the property

(vi) has no effect on the structure of & and &. Thus, the use of (vi) in the following
sections will only simplify the formulations and proofs of our statements.

At the end, a similar consideration of the role of the subset SV will be carried
out.

First, let us remark that, making use of (iii)’, the axiom (vi) can be stated as
follows

(Vi) XESAXEPSAxEX—~[x, X]€0.

Now, introduce the definition of pseudosimilarity and similarity: let us point

out that S'is always a fixed set and ,,a relation ¢ on S means ¢ © S < !S throughout
this section.

Definition 3. 1. Two relations ¢, and ¢, on S are said to be pseudosimilar if
(2) XESAXEBSAxG X —~([x, X]€ 0, ~ [x, X]€ 0,).

They are said to be similar, if they are pseudosimilar and S, =S,,.
Both pseudosimilarity and similarity of relations on a set just defined are,
obviously, equivalences. Further, if g, and g, are pseudosimilar, than

(3.1 XES—~([x. @) €0y - [x. D)€ 0,)
Thus, for two similar relations ¢, and ¢, we have, besides S, =S, . also
(3.2) Sh=S" and S, =S5

Theorem 3. 2. Let 9, and 0, be two relations on S. a) If they are pseudosimilar,

then 35, ,, =35 ,,. b) If they are similar, then even Js_, =35 ,,.
5) The systcm_li}'. (ii) and (ii1)" is not equivalent to (i), (ii) and (iii) (even if (iv). (v) and (vi)
are supposed): If §=(s5)_'4 with an infinite set 4 and a relation g is defined by
[x. X]€p «» x =5 A (XEX v X¢F),
then, besides (ii), (iv), (v) and (vi) (with §°= §={(s)), also (i)’ and (iii)" are satisfied. but (i) is not

(for, [s, Aleg A [s. Ol¢o).
“) A detailed consideration of this question will be given in another paper.
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Proor. The assertion a) follows immediately from the definitions (3) and (2),
the other part b) from the fact that S, = S,..

Theorem 3. 3. Let ¢ be a relation on S satisfying the conditions (i)—(v). Then
there exists a GA-dependence relation 6 on S which is similar to o.

Proor. Define the relation 4 in the following way:
(a) x€S° S, AXEPS—~([x, X]€0 -~ [x, X]€ 0):
(b) XES,AXEPSAXE X~ ([x, X]E€S = [x, X]€0);
() xESAXEPSAxEX—[x, X]€0.

Clearly, accordin_g to (a) and (b), S,=S; and ¢ and o are similar. Then. by
Theorem 3. 2, J5., =35 5 and Js_, =I5, 5. Further, obviously,

[x. X]€0—~[x. X]€0.

Now, using arguments of a routine nature we can easily prove that J is a GA-
dependence relation, i. e. that it satisfies (i)—(vi); let us remark only that. in con-
sequence of the definitions (b) and (c), each of the properties (i)—(v) of d follows
already from the corresponding property of ¢ (taking S$= S§) and that (c) is just
the stronger form (vi) of the last condition for é.

Thus, the proof of our theorem is completed.

Within the family T5 of all the GA-dependence relations on S the concept of
similarity is unnecessary. For, any two similar GA-dependence relations are, in view of
(3. 2), () and (vi), identical. However, the other concept of pseudosimilarity enables
us to introduce a ,,closure operation™ in 5. Notice that the implication (3. 1)
yields the equality S5, = S3, for two pseudosimilar GA-dependence relations 4, and
d,. Thus, two pseudosimilar GA-dependence relations 4, and &, are different (i. e.
are not similar) if, and only if. S} = S)..

Theorem 3.4. Let 6¢ T5. Then there exists a GA-dependence relation 6 ¢ T
such that

(x) o and & are pseudosimilar and
B 53 =0.
Moreover, & is uniquely determined by (=) and ([).
PrOOF. Define the relation & on S by
(3.3) XESAXEPRS ~([x, X]€5 — [x, X]€dvxeSY A X).
First, we see immediately that 6 and & are pseudosimilar. S:zﬁ and thus,

= N
3

— Jv - = < - -
Sa—SaU36 3l1d ‘IS.J_“’S,J_"IS.J'

&

v

4

In order to show that ¢ is a GA-dependence relation, we take Sg: S;u S: and
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notice that (i) (vi) are satisfied in a trivial way provided x or y belong to S): but,

if x and v lie in S;. then the validity of (i)—(vi) for o follows from the corresponding
property, and eventually the property (i), of .

The second part stating the uniqueness of o is a consequence of the assertion
we have mentioned before formulating Theorem 3. 4.

REMARK. 3. 5. In a similar fashion, altering the definition (3. 3) for
XESAXEPS = ([x. X]€0" == [x, X]€dV x€ (SYINN)NX),

the following generalization of Theorem 3. 4 can be proved:

Let 065 and NS S). Then there exists a GA-dependence relation oY < 3§
such that

(2)" & and oV are pseudosimilar and

By Sk=N.
The conditions (2)" and (ff)" determine o™ uniquely.

REMARK. 3. 6. According to the foregoing, the operation  —d in Ts is extensive
(0 =0) and idempotent (4 =d). Since it is also isotone, i.e., for 4, and d, of s,
d, =0, implies d, =d,, we can speak (in the sense very similar to that of E. H.
MooRrE [18]) of a closure operation 8 -4 in 5. The class C,< D5 of all the GA-
dependence relations pseudosimilar to ¢ is just the subfamily of all the GA-depen-

dence relations on S mapped in this operation onto é: moreover, & belongs to G,
and is the greatest element of it.

§ 4. An equivalent system of axioms

As throughout the whole paper, (S, d) is a fixed GA-dependence structure.
First, let us state explicitely some easy consequences of (i)—(vi).

Lemma 4.1. xé S . SSAXSSYUSS~[x, X]4 9.
Proor. This follows immediately from (8() and (i).
Lemma 4.2. xc SA[xv. ()]€d—~[py.(x)]) 0. 7)

Proor. By Lemma 4. 1. we have y¢S. The implication is trivial. if x=y. In
the other case, we apply (iv) with /=0.

Lemma 4.3. X6 SAXERSA[x, X]€3—~ IF(FS X AFEF Alx, FI€0).
PROOF. By (9() and (§), the statement is obvious for x € S¥ U S5, taking F=0.
If xS, then, according to (i) and (ii), we deduce
[v, XN SI€OIAXNSEPRS=IF(FEXNSSXAFEF Alx, F1€0).

") Or, in another form: x€S5 2y € S—([x, (V)] €D == [y (x)] € 9).
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Lemma 4.4. a) [c3-InSS=0.
b) TeJ-I\SVed.
c) IEIAXESY-TUXED, ¥

ProOF. All three parts are easy consequences of (). (J) and (i).
Now, let us formulate some basic properties of d-independent sets and systems.

Theorem 4.5. a) [cIAFCI~Tcd;?)
b) I€IAI'SI-TEQ:
c) CECAC'SC—-CEeC;
d) 763 — YF(FSIAFeF - Fed);
e) 1€§ — VF(FSIAFEF ~Fed);
f) CEC~YF(FSCAFEF —~FeQ).

PrOOF. a) Suppose I ¢ 3. Then, there is, by (J), an element x, ¢/, such that
[x0. I (x0)]€8; in view of Lemma 4.4 a) and (), x, € S. Hence, taking into

account the inclusions 7" (xo) S 7 (x,) S S, we get, according to (iii)’,

[x0, IN\.(xp)] €6,
i. e. a contradiction of 3.

b) and c) result from a) immediately by (J) and (&). respectively.
d) The implication —~ follows also readily from a). Let us prove the other
implication - indirectly. Then,

P68 3xg(xo€TA[xo, I \(xo) €6),
and thus. in accordance with Lemma 4. 3, there exists F, such that
Fo S I\ (x0) A Fo € F Alxq, Fo)€0.
Since xy € Fou(xo) and [xo, (Fou (X)) (xo)] = [xo, Fol €0, we have
Fou(xe)STAFau(xo)€F AFyu(xp)é 3,

a contradiction of our hypothesis.
Finally, e) and f) follow again easily from d).

Lemma 4.6. xe SAVESATEIA[x, TU(M]ESA[x, []66—[r. [U(X)]€0.

Proor. First, notice that [x, fu(y)]€d and [x, 7]46 imply that x4 SV and
x4 S5, respectively. Further, if y were an element of SY U S5, then, by (i),

%) Lemma 4. 4. can be expressed as the following equivalence
feJ~InSS=rINnSEY,

) Or, equivalently, X§ 3 » XS X'~ X'¢ 3: and, similarly, for b) and ¢).
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[x. 7u(»)]€0—~[x, T]€4. Thus, both x and y belong to S. Moreover, clearly y4/7
and. by (vi)’, x ¢ /. Since the statement is trivial for x =y, suppose x = y.
Then, in view of Lemma 4. 3,

[x, Tlu(M)€d—~ AF(FSTu(¥)AFEF Alx, F]€0),
and, by (i)',
(v, N§dA[x, FIEGAFSTU(y)=~F=F u(WAFZSInS,
i.e. F'¢# 3. by Theorem 4. 5. Thus, in the whole,
XESAVESAF EF NIAX#YAXEF AYEF Alx, FU(MEIA[x, F'140;
therefore, by (iv), [y, F"uU(x)]€4 and, by (iii)’,
[y, Tu(x)]€d, q.e.d.
Lemma 4. 7.
ISSCCS SA{xe S\ S~ FIUIEF A Alx, 11€8)} A
AXESATEIACECAXEIA[x, ClES A
AYY(veECAydTI—~[y, I1€8)~[x, I1€5}].

ProoOF. The first part follows immediately from (v), Lemma 4. 3 and Theorem
4.5 ¢). The second one is trivial for x€ SYU S5, Thus, let x€ 8. Then, applying
Lemma 4. 3 together with Theorem 4. 5 c), we see that there is a subset F such that

FEFNEAFSCAlx, Fleod:

let F=(f,,fs.....1,). Again, in view of Lemma 4. 3 and Theorem 4. 5, for any i,
I =i=n. such that ;¢ I there is F, with the following properties

FeF NnIAF,SIALS, F]co.
For the union F, of all these F; we have, by Theorem 4. 5 and (iii),
FoSIAF € F nIAYASEFASfE T[], Fol€9).

Then, making use of (v) together with (iii)’, we get our assertion [x, /]€d.
Now. we are ready to formulate our equivalent axiomatic system:

Theorem 4. 8. The system of the axioms (i)—(vi) is equivalent to the following
{ formally stronger ) system (1)—(6):

() x€SAXERS—~([x, X]€5 ~ [x. X~ S]€d); 19)

(2) XESAXERSA[x, X]€d—~ IF(FEXAFEF Alx, FI€0):
(3) XESAXCSYCSSA[x. X]€6~[x, Y]€S;

(4) xeSAYESAICIn[x, Tu(MNEdALx. T8~ [y, TU(x)]€8:

%) The implication [x, X' ~S]ed — [x, X]ed follows already from (3).
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(5) 3SYUSCSSA{XES—-ZIIEF NEA[x, I]E€)} A
A{xESA TcAACERA[x, CleEdAYY(YEC—[y, [N€0) =[x, I HE
(6) XEPSAXEXNS—~[x, X]€O.

ProOF. Clearly, (1)—(i), (2) —(ii), (3) —=(iii), (4) —=(iv), (5) A(6) =(v) and (6) —
~=(vi). On the other hand, (1) is an easy consequence of (i), (2) is the statement
of Lemma 4. 3, (3) follows immediately from (iii)’, (4) is the assertion of Lemma
4. 6. Lemma 4. 7 together with (vi)" imply (5) and (6) is the property (vi)'.

REMARK. 4. 9. It is quite obvious that neither in the first part of (5) nor in (6)

the assumption x€ S can be replaced merely by x¢€ S. Also, (4) cannot be strengh-

tened by omitting the assumption /€3 and as to (5), there does not exist, in general,
a canonic subset S¢ auch that any element of S depends on a suitable single element
of §¢'1). In order to prove these facts, let us consider two examples of GA-depen-
dence structures.

l. Let S=(a, b.c.d) and 8" be given by the following GA-dependence table

a|0 I I 0o 0 I I I 1 l 0 1 1 1 1 |
h |0 1 | -0 1 1 I I | 0 l 1 1 1 |
"ol N1 I ) FA 1 0 0 1 0 1 0 1 1 | 1 | l
7l [V SN ) TR o O 1 ) ER (. 1 0 I 1 0 1 1 | |

Thus, S=(a,b,c,d), 3=3=1{0, (a), (b), (¢), (d), (a, ¢), (a,d), (b, c). (b,d), (c.d).
(a, ¢, d), (b, e, d)}. All the properties (i)—(vi) can easily be verified: moreover,

$={S,(a,c,d), (b, c,d)}. But,
[, (a, b, D)) €8 Ale, (a, D145 Ald, (a, b, )45,

showing the necessity of the assumption 7¢3 in (4).
Let us point out that, taking S¢= S, we have

[[(', (a, b, d)]€d" Ala, (a, d)]) € Alb,(a, d)] €0 Ald, (a.d)] €5 Ale, (a. d)] 50,

I. . also the assumption C£¢ (in fact, C£3) of (5) is here essential. However. we
shall see that, as in this particular example, there exist, in general, canonic subsets
such that this assumption can be omitted. But, because of rather limited choice of
such canonic subsets we shall find it important that (v) (and thus also (5)) has been
introduced in a weaker form.

') For the dependence in abelian groups (see also the last § 9) both these stronger properties
are satisfied.
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2. Now, consider the GA-dependence structure (§. 0”) defined by the following
table

PR TR O
[ R BRI S IR & X R, KW
a:l(] | 1 1 0 1 1 | | | | | | 1 | |
CHETHR T B NN TR TR A R R DR S OB R R
(‘;0 | 0 1 0 1 | | | 1 | | 1 1 1 1
d | 0 0 0 0 | ] | 1 | 1 | | 1 | | 1

Thus, S=8=(a,b,c,d) and I=3=1{@, (a), (b), (¢), (d), (a,d). (b, ¢), (b, d).

(¢, d)}. Again, it is easy to verify the properties (i)—(vi). Since
[b. (@)]€0" Ala, (c)]€0" A[b. (c)] 40"
and
[d, (b, c)]€0" A[b, (@)]€0" Ac. (a)]€0" Ald, (a)] 40",
we conclude that
é oo [{b‘! d‘]. (_€$ ‘!)}'

But, if 5¢is (b, d) or (c. d), then there is no single element in §¢ such that ¢ or b
depends on it, respectively.

ReMARK. 4. 10. Let us conclude this section by the following characterization
of the subsets of neutral and singular elements in a GA-dependence structure:
XESN o [x, (X)]40:
XE 85— [x, @)€6.

§ 5. The independence of the axiomatic systems

In this short paragraph, we shall prove the independence of our systems by
constructions of suitable models. We use here the notation (i) and (i) in order to
distinguish two parts of the first axiom (i): [x, X] €6 —~[x, Xn S]cdand [x. X~ S]€o -~
~[x, X]€4, respectively.

. a) (i) does not depend on (i), (ii)—(vi). Consider the set S=(a.b) and the
relation ¢, on it given by the following table'?)

0 (a) (b)  (a, b)

al 0 I | I
bl 1 | | 1

12) In this section, we extend the concept of a GA-dependence table (Definition 2. 2) to the
case of a general relation on a set.
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Thus, S¥=0, S5=(b), S=(a) and 3 =3 ={0, (a)}. It is easy to verify the validity
of (1-) (ii)—(vi). But, [a, (b)]€ 0,4 Aa, O] € 0,,. Simultaneously, we see that (1) does
not depend on (2)—(6). % .
b) (f) does not depend on (i), (ii)—(vi). Let the relation ¢,, on S=(a, b) be
defined by the table
| © (a) (h) (a, b)

al 0 [ 0 0
|1 | S

It is SN=0, S5=(b). S=(a) and J=35={0, (a)} again: now, (i), (ii)—(vi) are
satisfied, but [a, (@))€ 0,2 A [a, (a. b)] £ 04,.
Here, [a. (a, b)) 4 0,,. i.e. (6) does not hold for ¢,,: let us give an example

showing that (;} does not depend even on (i.], (2), (iii), (4)—(6):'?) The relation g, on
S =(a, b. ¢) be given by
| O (a) (b) (¢) (a,b) (a,¢) (b,c) (a,b,c)

1 I 0 1 1 0 1
1 1 0 | | 1 1
] | 1 1 1 1 1

a |
b |

-0 O

L2

Hence, S¥ =0, S5=(c), S=(a. b) and 3 =3 = {0, (a). (b)}. The properties (). (2).
(iii), (4)—(6) are clearly satisfied (taking S°=(a)). but [a, (D)€ 0,3 A[a, (b, c)]40,5.
2. (i1) does not depend on (i), (iii)—(vi). Consider an infinite set S with the
relation ¢, defined by
acSAA l:—'._S-([a, A€oy~ aCAVAGF). %)

Clearly, S=S and d =3 =#. Taking S°=S5, we can verify all the properties (i),
(1), (ii1)—(vi) and (3)—(6): but [a, 3‘\((:)]-592 and there is no finite subset F of
S™_(a) such that [a, F]€ ¢,. Simultaneously, we have shown that (2) does not depend
on (1), (3)—(6).

3. (iii) does not depend on (i), (ii), (iv)—(vi). This can be established very
simply by consideration of the set S=(a. b) and the relation g;, given by the table

9 (@ (b (ab)

al 0 1 0 0
b| 0 0 [ 0

13) On the other hand, as we have pointed out, it is a consequence of (3).

14) This example might be generalized in the following way: If card(S)=a=N,. and a=b=N,,
then define p, by = =

aESAACS—~([a,. A]€ p: == a& A v card (4) = D).
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In order to show that also (3) does not depend on (1). (2), (4)—(6). let us consider
the following general type of relations on a set §:

Let card (S) = a=2and 2=b=a be a given cardinal number; define the
relation g5, by

acSAACSS ~([a, A]€ 03, a€ Av 1 =card (4) <b).

Clearly, S=S and =3 =0 U {(a)}.es. Taking S¢=(a,), where a, is an arbitrary
element of S. the properties (1), (2), (4)—(6) can easily be verified. If b=aqa is
finite (especially, if a =2), then even (3) is satisfied, i.e. g3, is a GA-dependence
relation on S. Otherwise, 0, fails to satisfy (3). '9)
4. (iv) does not depend on (i)—(iii), (v). (vi). Consider the relation g, on the
set §=(a.b) given by
(%) (a) (b) (a.b)

a}o ] 0 |
b| 0 | | |

Then, S=(a.b) and 3 =3={0, (a), (b)}. (i). (ii), (iii), (v) (taking e. g S°=(a))
and (vi) are satisfied, but [b, (a)] € 04 A [a. (P)] & p, implies, in view of Lemma 4. 2,
that ¢, does not possess the property (iv). The example shows, at the same time.
that (4) does not depend on (1)—(3). (5) and (6).

5. (v) and (5) do not depend on (i)—(iv), (vi) and (1)—(4). (6). Define the
relation g5 on the set S=(a, b, ¢, d) in the following way:

LTRSS o e i (R S S S T
gl o - LBk &M b LT v
it oty 008 AT 4, B T
PO LI N s B R RN NS A TR SR PR . W (e
F O R (O (R I N SR R ST S 0, W L SR

We have S=S and 3 =3 ={0, (a). (b), (¢). (d). (a. d). (b, ¢)}. The relation g5 has
evidently all the properties in question with the exception of (v) and (5). Since

[a. (B)] €05, [b.(d)]Eos, [d (c)]€os, [c (a)]€os.
[a. ()]G os, [b,()]des, [d.(@]dos. [e,(B)]dos,

and

no one of the elements b, d. ¢. a can be in S¢. Thus, neither (v) nor (5) is valid.

'3) Note that, if No=a=0b, the relation o,, is ..nearly complementary” to the relation g,
introduced above in the footnote'4).
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6. (vi) and (6) do not depend on (i) —(v) and (1)—(5). Let ¢4 be the relation
on a set S, 3=card (§) = R,. defined by

acSAASS~([a, AJ€ g6~ A2S ().

Hence, S=S and 3 =3 =S5~ {S]. Taking S°=S, the validity of (i)—(v) and
(1)—(5) can readily be proved. However,

[a, (@)] § 0¢ for every a€ S.'°)

§ 6. o-independent sets

The purpose of this section is to prove the existence of maximal d-independent
sets, and especially, of maximal d-canonic systems. Let us start with some prepara-
tory lemmas.

Lemma 6.1. xcSATcIA[x, []46—~Tu(x)2d. 17)

PrOOF. Let Tu(x)43. Then, in view of our assumption, there is y& 7 such
that
v, (I (»)u(x]ed.

Since, by Theorem 4. 5, [‘\_(}')Eé'i and since [y, 7 (»)]4d, we get, by Theorem
4. 8 (4), a contradiction,

Lemma 6.2. Let {1} be a directed system'®) of elements of d,0r 3, orQ

and let
I=UlI,.
yer

Then 1€3, or 1€3, or 1€¢, respectively.

Proor. We give an indirect proof again; suppose /43. Then there are an
element x€/ and a finite subset FS I (x) such that [x, F]€0: thus, the finite set

Fu(x) does not belong to 3. According to the properties of a directed system, there

o Also the relation g,, on S=/(a.b) defined by means of the table

(%) (a) (h) (a, h)

0 0 1 1
0 | 1 1

shows the independence of the axioms (vi) and (6) on the others.
') This can be expressed in another form as follows:

xESATEI AxgI-(Ix. NI€S ~TUX) € J).

'8) Or, in another terminology (see e. g. J. KeLLey [11]) a directed set.
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is an index y, €I such that
Fu(x)E1l,,

and since 7, €3, we have a contradiction of Theorem 4. 5.

If, for every y€I', 1,£ S or 7,S S¢, then obviously also /S S or /< S¢, res-
pectively. The proof is completed.

As a particular case of Lemma 6. 2 let us formulate

Lemma 6. 2. Let
A=

In

veey X<V,

1y

N
i
I

I

be a non-decreasing chain of elements of 3, or 3, or &. Then | 1, is also in 3, or 3,
or &. respectively. 1<y

REMARK 6. 3. Lemma 6. 2.” and Lemma 6. 1 can be used to prove the following
condition for a set / to be independent:

Let /=(x,);=,<,: then, €3 if, and only if,

[xp. (X)) z2<pl 46 for any f,
(where by (x,),.,.; the empty set @ is to be understood).
Lemma 6.4. x€SA I€IACECA[x, 11§ A[x, Cl€Ed~3C(CSCACEF A
AluCednlx, TuC)ed.
Proor. First, there is a finite subset < C such that [x, F]€4d. Let card (F)=k.

Now, there should be x, € F such that [x,, /]¢J; for, otherwise, by Theorem

4.8 (5), we would get [x, /]€6. Thus, in view of Lemma 6. 1, we have /U (x,)€3.
IT [x. Tu(x;)]€6, we put C'=(x,). In the other case, we must reach, by induction
in at most k steps, a subset €' =(x));~y.,... ;£ FEC, I=k, such that

IuCed and [x,JUC]€s, q.e.d.
On the basis of the preceding lemma, we can prove
Lemma 6.5. xé SAISIA[x, []166— 33 (yESC ALy, 114 6).

Proor. Theorem 4. 8 (5) guarantees the existence of C£¢ such that [x, C]€o.
Then, making use of Lemma 6. 4, we can find a subset C"S C with

TuCed and [x, JuC’[€d.
Thus. C" #0 and, for any y€ C’, we have [y, []44.
Now, let us introduce the following definitions concerning maximal subsets:

Definition 6. 6. Define the classes i, 3%, 3% and ©* '°) of maximal sets,
maximal d-independent sets, maximal o-independent systems and maximal o-canonic

%) In full notation, 33 ;,
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svsiems by

(M) MeM —~ MePSATX (YESNM~[x, M]9),
F) Fr=omas,

(%) Ted* -+ TcIAYY (XESS T—[x,I]€6) and
(C*) EC*x=3J* PSS,

respectively.
The following propositions can be deduced readily:

’iJl

F*ed* — [*cdavx (xe SN\J* - I*u(x)§ J):
Ied* « I*€IAVx (x€S~[x, I*]€dvxel®);
17 €d* = I*€IAYx (xS \J* = T*U(x)4I);

M
far,

1# 3% s J*€IATYX (XES—[x,[7]€0):
1%c3* ~ SNCI*ASSA ]+ =0;
IS S—~(I€3* — TUSNcJ*).
And now. formulate the main result of this section.
Theorem 6.7. a) [~ 3I<(I*c I« AIST*).
b) I€d—=3I*(I*cI*AISIT™).
Q) I€d—I*(I*€* AISI* AI*\JES S
d) 3*=#0.
e) I*=0.

f) C*=0.

ProOF. Assume, for a moment, the validity of the assertion ¢); then, adding
S¥ to /*, we get a): b) follows immediately; and, taking /=/=0, we have d). ¢)

and f).
In order to prove c). consider the family <t of all the subsets X such that
XEIAX22IAXNJE SC.
Clearly, the union of a chain of such
X, EX,S...EX,E..., o=,

is an element of ¥ again: for, by Lemma 6.2, |J X,€d and /S |J X, with

a<y <V

(UX)NI= U (XN\DESS

a<v a<y

Hence, by Zorn's lemma. pick a maximal /* €<¥,
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It remains to prove that /* €3, We suppose the contrary. Then, there is
x€ 8 717 with [x, /*]40. According to Lemma 6. 5. an element y € S° exists such
that [y, /7]44, i. e.. in view of Lemma 6.1, /* U(y) #/* belongs to X. This contra-
dicts the maximality of /* and concludes the proof of Theorem 6. 7.

§ 7. The o-rank of a GA-dependence structure

Let us start with the following definitions.

Definition 7. 1. For any X< S or X< S. define the complete d-closure cl(X)
or o-closure cl(X) of X by

(al .\‘{-CI(X}--.\‘Efn([,\-,,\’]gév,\‘g,r}
or
(ch) xécl(X)—-xeSAalx, X]€0,

respectively. A subset X of S is said to be completely o-closed if cl(X)=X and
XZ S to be d-closed if cl(X)=X.
Clearly, for any X< §,
d(X)=cl(XnS)uXuSS=cl(XnS)u(XnSN)uSS.

Also, X is completely d-closed if, and only if, X2 8% and X S is d-closed.
Further, we see immediately that both operations of the d-closures are exten-
sive and isotone, i. e.

X,EX,S5~X, Sl (X)) A cl (X)) Sl (Xy)
and
X EX&E85-X,CEcl(X)Acl(X))Ecl (X))

Even more, for /; and /, from 3, /, —/,, we have obviously
cl (1) =cl(l,)
and similarly for the d-closure provided /, and /, belong to 3.

REMARK 7.2. The present example shows that these operations are not, in
general. idempotent, i. e., in general, cI®(X)=cl(cl(X))=cl(X) does not hold.

Let '
S, =)y 5i=ns1,n=3,29)
be a given set; define the relation ¢ on it in the following way (X being a subset
of §,):
[@a,, X)60 = [ay, X] =+ a,€EXVva,€EXV(a,, a,,,)EX:
[a;. X]€d~—~a;€XVv(a,,as,....,a;_y)SX for 3=i=n—1;
la, X]€da,€XVv(a,, a,,)EXV(ay,a,,))EXV(a,a,,..,a,_,)EX:
[a,.,,X)€0—~a,.,€XV(a,,a)EXV(a,. a)CX.

29) A similar GA-dependence structure for #=2 can also be constructed.
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Thus, S,=S, and, putting S;=(a;)3-;-n+1, il can easily be verified that o is
a GA-dependence relation on S, (in fact, all the properties (i) —(vi), besides—
perhaps—(iv), are evident).

Now, considering the subsets 4, =(a,) and A4, =(a,,a,.,), we deduce that

a‘f'(A,):cl'f’(A,):[al,az,...,ahl) for 0= j=n,

and
clV(4;)=clV(4;)=A,u(ay, a3, ...,a;,;) for 1=j=n-2,2%")
Hence,
A, =l (A))# ... #cl"=1(A4,) Zcl™ (4,)=cl"+D(4,) = ...
and

Ay Zcl(Ay) # ... Zclm=3(4,) £ cl=2(A,) =clo-1(A4,) = ...

In the next section (Remark 8. 12) we give a more general example of a GA-de-

pendence structure (S,,,d) containing, for any natural n,, a subset A =S, such
that
A#cl(A)# ... #cl=1(4) =l (4)=clm+D(4)= ...

We have seen that the operations X —cl(X) and X —cl(X) are ..mehrstufigen
Hiillenoperatoren™ in the sense of J. ScHMIDT [25]. Due to this fact, our concept
of a GA-dependence relation is an essential generalization of the ,.classical” de-
pendence relation of VAN DER WAERDEN.

REMARK 7. 3. Let us mention that in terms of the d-closure the second part
of (5) of Theorem 4. 8 (or, also of the axiom (v)) can be formulated as follows:

(5 T€TACECACSC () ~cl(C)=dl ()
(or,
(VY T€EFNIACEF ACACScl(l)~cl(C)Scl(])).

Thus, in particular, for C, €€ and C,€¢ satisfying C, Scl(C,) and C, =cl(C,).
we have cl(C,)=cl(C,).

Also the classes (., 3%, 3% and € can easily be defined as the classes of sub-
sets M such that cl(M)= S, etc.

REMARK 7. 4. Consider for a moment the subfamilies < and & (of RS) of
all the completely d-closed and d-closed subsets, respectively. Since the intersection
of elements of @ (or ) belongs to D (or ) again, there exists, to any subset
X';S (or X< S) the least completely o-closed (or d-closed) subset containing X;
let us denote it by CI(X) (or CI(X)). The operations

X-Cl(X) and X-Cl(X)
1) For a natural j, cl“"(X) is defined, by induction, as E'l(a“"”{xn and ol'?(X)=X.
Similarly for clPx).
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are proper closure operations, i. e. they are also idempotent (,.einstufigen Hiillen-
operatoren” of J. SCHMIDT in [25]): unfortunately, in general, the knowledge

of these operations does not contribute very much to the study of the GA-depen-
dence structures. In fact,

Cl(X) = EIE!“”(X) and Cl(X) = Dcl'"‘{X).
n=1

Now, let us introduce the relation & by
Definition 7. 5. Define the binary relation ¢ on J (i. e. eS3 X J) by
(€) [1,, L)€e « I, Sl (I) AL, Sl (1,).

The relation & is obviously reflexive and symmetric. It induces a relation &
on &3 (i. e. if restricted to € ¥ &) which is, by (5) of Remark 7. 3, also transi-
tive: let us call it the d-equivalence.

We deduce immediately

Lemma 7.6. a) If€3*aAl5€3* ~[I7, I3]€e.
b) CTeC*ACieC* - [Ct. C3)€Eec.
Lemma 7.7. IESACECAIScA(C)Al cI-CEcl(I).

Proor. For, C<Scl(/") together with our assumptions imply, by (5)" of Remark
e 3

Ccl(C)Scel(l),
a contradiction of 7€ §,

Especially, making use of Lemma 7. 6, we have
Lemma 7.8. a) /I€IACECA[L Cleeal'cI—-[I",Clée.
b) I*€I*ACHEQH AL CI* — C* L el (I%).
Further, we shall need also
Lemma 7.9. [,edAlL,ednl,Scl(l))~
= Al (1, S AL I edA[l, U, 1]€e).
ProoF. Consider the family ¥ of all X such that
L EW SRl e
First, ¥ is non-empty (for /, €<Y) and the union of a chain
X, EX,E...EX,C...,a<v,

of elements of X belongs, by Lemma 6. 2°, to X, as well. This implies the existence
of a maximal element X, of ¥:

Xﬂ =J'2Ufo “ith f‘)c’;II.

Hence, for each element x€/,, we have either x¢/, or X, u(x)4d, i. e. [x, Xy €0.
The assertion [/, U/, I,]€¢ follows.
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The following three lemmas deal with cardinalities of maximal o-indepen-
dent and J-canonic systems.

Lemma 7.10. /EIACECNF AL, Clee~IcF.

Proor. For every ¢ € C, there is a finite subset /. [ such that [e, /.]€0. Thus.
the union (J /7, is a finite subset of / and clearly

ceC
[U Ze. Clee.
ceC

Hence, from Lemma 7. 8 a) we deduce |J /. =/, i. e. [ is really finite.
celC
Lemma 7.11. JEIACECACEF All, Clee—card (/)= card (C).

Proor. Following the line of the previous proof (of Lemma 7. 10) we get again
that
I=Ul. with I.€F.
cel

Thus. because of card (C)=R,.

card(/) = R, card (C) = card (C),
as required.

Lemma 7.12. /cIACECA[L, Cl€e— card (/)= card (C).

Proor. By Lemma 7. 11, the conclusion holds if Cd¢.%. Suppose therefore
Ce.#; then, in view of Lemma 7. 10, also /€.#. Thus, let

= LUl and €E=LuC" wth ot =0
and
card (/) =k, card (C')=1/.

We are going to prove the statement of our lemma (i. e. kK =/) indirectly. Let. on
the contrary, be k= /. Let us suppose that, for a natural number n, 0=n =k, there
exists /' such that

I I'vCacard(I"nl)=k—nA card (I CY=nAlyulI™ed

and, moreover,
[fou I™, C]E€e.
Thus,
card (/™) = k—n+n = k = | = card (C").

Now, take an element x,,,€/""n /. By Lemma 7.7, there is an element
Yn+1 €C such that
[.rlH 1» {IO o ‘fllli)\\\ (-\lnil)]& {s-

Applying Lemma 7.9 to C and (/, v I) . (x,.,), we deduce that there is a non-
empty subset '+ C C” such that [, U I@+D), where I+ =(J®\ (x,, ) ",
satisfies

Toule+Ded and [loul+V), Cl€e.
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Furthermore.
"V rouCacard(/"*"nl’)=k—(n+1)Aacard(I"*V"nCY=n+1,

card (/1) = card (C).
Clearly, for n=0, there exists /'’ =/, Hence, by induction,
card (/" C) =k = | = card (C)

for m(=k) large enough, a contradiction.
Thus, in fact, there is k=/. i. e. card (/)= card (C).
Now. we are ready to formulate

Theorem 7.13. /* cJ* ACTEE* AC36 & —card (/%)= card (C7) = card (C3).

Proor, The inequality card (/%)= card (C7) follows immediately from Lemma
7. 12, taking into account Lemma 7. 6.

The validity of this inequality in both directions in the case of C{ and C:
yields then the required equality card (C7)=card (C3).

Definition 7. 14, Let us define the sets W5 and N5 of cardinal numbers 1 by

(N) r€Ng < 3I*(I* €% Acard (I*) = 1)
and
(R) t€ENg — II*(I*€I* Acard (I*) = 1).

Then, Theorem 7. 13 can be completed and read as follows:
Theorem 7.15. a) 3r*{r*€ReA VI (N5 ~r=1%)};
b) VC*(C*€C* —card(C*) = r*);
¢) 3 {FreNsavr(reNg—r=7%)):
d) vI*(I*€d*Al*nSCS SC~card ([*) = T*);
e) r* = r*+card (SV).
Definition 7. 16. The cardinal numbers v* and r* of Theorem 7. 15 will
be called the d-rank and the complete d-rank of the set S and denoted by
= r,,(gi and r*= 1"6(5).
respectively.
Let us notice that as far as (S, d) is a non-trivial GA-dependence structure, both
r;(S) and r;(S) are different from zero. In fact, the equality r;(S) =0 is a necessary

and sufficient condition for (S, d) to be trivial.

In some particular cases, the GA-dependence relation o satisfies some addi-
tional conditions making possible to strenghten Theorem 7. 15. Let us introduce
the following one applicable e. g. in the case of the dependence relation in abelian
groups:

(vii) VIIEF NI-YC(CECACScl()-CEF)}A
AVIICINIGF -V C(CES ACES el (I)—card (C) = card (I)}.
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Assuming (vii) we can prove
Lemma 7.17. IEIACECACEF A[l, Clée—~card (/) = card (C).

PRrOOF. According to the first part of (vii), /4.#. But then, making use of the
second part, we get card (C)= card (/). Since, in view of Lemma 7. 11, card (C) =
= card (/). the required equality follows.

Thus, especially,
1*€3% A C* €€ Acard (C*) = R, —card (I*) = card (C*).
or, expressing this fact as a supplement of Theorem 7. 15, we have
Theorem 7.15. ) 1*=x,—~(Ns = (*) ANz = (r*)).
Let us conclude this section by several remarks.

REMARK 7. 18, In order to give an example showing that (vii) does not depend
on (i) —(vi), consider the set

S, = (ag)v(a)er, @ =card(l) = Ny,
with the following relation ¢ on it (X< S,):
[ag, X]€0-X %0,
la,, X]€o+(ag,a)n X#O for every ye€r.

Taking S¢=(a,).er, we can easily verify the validity (i)—(vi) (obviously, e. g. 3 =
=1(ap); v ¥(a,).er). Now, we have (ao)€/* and S5 thus, S Scl(a), but S§
is infinite.

This example shows, at the same time, that we cannot expect that Theorem
7. 15 could be improved, in general (in the corresponding set W5 we have | and
simultaneously an (arbitrary) cardinal number a).

In the next section (Remark 8. 12) a more general example of this type will
be introduced.

REMARK 7. 19. All through this section, we have restricted our study of rela-

tions among cardinalities of subsets of S on the independent sets only. Let us point
out that the independence of the subsets was an essential condition, Consider e. g.

the GA-dependence structure (S. o) given by the following table

PO TR U . .k ) (R e & il
a | 0 | 0 0 0 | | | 0 0 | | | | 1 |
D10 0 | 0 0 | 0 0 ] ] | | 1 1 ] ]
¢ 1'0 0 0 1 1 0 1 1 | | | | | | ] |
d I 0 0 0 1 1 0 1 1 1 | 1 1 | 1 1 |
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Clearly, 3 =3 = {0.__(0], (b), (¢), (d). (a,b), (a,c). (a d). (b,c), (b.d). (a, b, c).
(a, b, d)}. Taking S¢=S, we can easily see that o is a GA-dependence relation.
Then, &* ={(a. b. ¢), (a, b, d)}: thus,

rs(S)=75(5)=3.

But, there is a subset of S$¢ with two elements only, viz. (¢, d) S S¢, which is maximal.

1. e, cl(e, d)=S. The assumption of Theorem 7. 15 on the set C* to be independent
is therefore necessary.

It is possible, however. to reduce the subset S¢ so that this assumption and
the similar ones (e. g. already in the axiom (v)) could be omitted even in the
general case. For that reason to take S¢=C*, where C* is an element of &%, is
sufficient (in our particular case e. g. S¢=(a, b, ¢) or S =(a, b, d)). For, then every
subset of S¢ is automatically independent. :

The fact that we have not introduced the postulate (v) in this form (i. e. without
the condition C€3) gives us the possibility of a wider choice of canonic subsets
and thus enable us to describe canonic subsets for the whole classes of GA-depen-
dence structures simultaneously.

REMARK 7. 20. Finally, let us remark that the cardinal numbers r;(S) and

rs(S) are really invariants of the GA-dependence structure (S, ) (in spite of the
fact that we have introduced them by means of a fixed (chosen) canonic subset
S¢€8§). This follows immediately from Theorem 7. 13 (or Theorem 7. 15).

As to the properties of the family & Theorem 6.7 f) can be interpreted as
the proof of the existence of minimal elements in §. It is easy to prove that there
are also maximal elements in &. Nevertheless, in general, there is neither the least
nor the greatest element in & (see, e. g. the example of Remark 7. 19 and the second
example of Remark 4. 9). The subfamily of all the minimal elements of & coincides
obviously with the subfamily of all the é-independent canonic subsets. On the whole,
we have proved that

I1* € §* —card (1) = ry(S),
I*€3% A ISE(SCEE A1 S S€) —~card (I*) = ry(S),
and, in particular for minimal elements of §,
(7.1) 1* €3* A& —~card (I*) = rs(S).

Thus, the d-rank is the least cardinality of elements of & and in the case that rs(S)

is finite, an element of & is minimal if, and only if, its cardinality equals r,(S). Ho-
wever, the converse of (7. 1). 1. e.

I*€ 3% acard(I*) =ry(S) ~I*€§

is not, generally, true even in the finite case, as illustrated by the, already mentio-
ned. example 2) of Remark 4.9.
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§ 8. Direct decompositions

Let (S, d) be a fixed given GA-dependence structure. If 7 is a subset of S,
then o induces a binary relation d, between 7 and k7 (there will be no confusion
if we denote it again simply by d). Then. applying a similar notation to that
in § 2, we see immediately that

(8. 1) TN =TASY and 75 =TnSS.
Thus, T=T (TV¥UTS) is a subset of S. Moreover.

o

7= 97,5 =35.,N KT
and
3p =8, ,;,=385,nPT.
The axioms (i)—(iv) and (vi) are also satisfied by é on T.
If there is a subset 7 < T satisfying the properties of (v) (i. e. a canonic subset),
then (7. 0) is also a GA-dependence structure — a substructure of (S, 0): (T,0)=
= (S, 8). Then, in view of Theorem 6. 7 and Theorem 7. 15, we have readily

Theorem 8. 1. (i r‘ilg(.S_', (5]—-:',,(?_'} = r#(§)n ra 'F)'C--f F&(ST).

RemMARK 8. 2. Let us give an example that, in general, a subset T of S with
the induced relation 6 is not a GA-dependence structure of (S, d):
The GA-dependence structure (S, d) be given by the following table

RPN & -5 0 -8 B - 8 1R
7, 0 (¢ Il (Rt (o RS ¢ 73 LR TN il il 195040 Rl (i B MR P (st ! R ol el
A M S A US  cli R I B Sl Y R TR SR (o U O SRR R G
ool B 0 A T M Y (T | Y 1 LR i I S (S (NS AR W PR I S FR) AR (N T S
A R S A R T O O T S T R M R oy RE: Tl A R R GO A e
" IR ST L § T ) A R e | T | S S S R RN ) Y R R ¢ R SRR (1 AR S 5
LR R R R T T G B S L T O A G A A R A P

Then, T=(a, b, ¢, d), together with the induced relation, is not a GA-dependence
structure (see § 5, section 5).
On the other hand, it may well happen that there exist canonic subsets T¢

and S¢ of a substructure (7, ) (S, ) and of (8. §) such that T<< S¢. Let us call
the substructure (7. d) in this case normal (in (8. 9)). Thus, in the class kS of all
the subsets of § there are subclasses & and 8 corresponding to all the substructures
and normal substructures of (S.d), respectively: Sl S& S LS. Moreover, obvi-
ously 3C§,
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Further, a GA-dependence substructure (7, 0) of (S, d) is said to be a proper
kernel substructure (of (S, d)) if

87,5 N 35,570,
i. e. if there is a canonic subset S¢ of S such that S 7. Thus. if (7. d) is a proper
kernel substructure of (S, 0), then
(=S
and, especially,
rs(T)=r;(S).
Denoting the family of all the proper kernel substructures of (S, d) by 3K, we have
CrCHSMSTCSBS.

A generalization of the latter concept is that of the kernel substructure: (T, o)
is said to be a kernel substructure of (S, o) if there is a finite chain

(T, 8) = (To, ) S(T1,0)S...S (T}, 8) = (S, 9)

such that (77, d) is a proper kernel substructure of (T, .d) for 0=;i=k — 1. Then,
again

(8.2) ro(T)=ry(S).

Let us notice that a kernel substructure of a GA-dependence structure need
not be a normal substructure of it:

Let (S, 8) be the GA-dependence structure of Remark 8.2 and
T=(c. d,e), }'_"1 =(b,c,d. e.f).
Then (7. d) is a kernel substructure of (S. d). for
§7,5 ={(c. €), (d. e)}.
$F,.5=1(b,e), (b, f), (c. ), (¢, f) (e.f) (b e f) (c.ef) and
85,0=1{(e,.N)}.
Evidently, (7. 0) is not a normal substructure of (S, 9).

Definition 8.3. A GA-dependence structure (S, d) is said to be a pseudo-
direct union of its substructures (S,,0), €T, if

(1) US,=S and

7€r

(2) yo€TAXES, AXENNFsalx, X]€d-[x. X\ U §,]€6.2?)
TEI (7o)

%) The condition X € F5 is. of course, merely formal.
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This fact is denoted by Ly
(S, )= 2*(S,, 9).
er
If, moreover, all Sy, y<T, are d-closed in S, then (S, d) is said to be a direct
union of (S, 9):
(S, 8) = 3°(S,, 9).
vel
If there is a kernel GA-dependence substructure (7. d) of (S, ) which is a
pseudodirect union of (S, d), y€TI", then we shall call (S, d) a pseudodirect product
of {S.... 0 - y
(S, 0) = []P(S.;. d),
rer
and finally. if S, is, moreover, d-closed in S for every y£TI, then (S, d) is called
a direct product of (S,,0):

(S, 8) = J]"(S,.
er

The following properties of a pseudodirect union (S, d)= X"(S,, ) follow
yer

readily from Definition 8. 3.
Lemma 8.4. 7, #7,~S, NS, SS¥U S5,
Lemma 8.5. a) 7, #7,—~§,,nS,,=9.
b) S=US,.
/Er

Lemma 8.6. a) /cdg—~InS,edg

b] I-'C\\_’Ufi .

Jel—
Lemma 8.7. a) S€c&5—-S°nS, €85
b} S(.‘ S'__—“US' EE‘S

Thus, making use of Lemma 8.7 and Lemma 8.6 together with Theorem
7.15 and (8. 2), we get

Theorem 8. 8. (S.d) = V"'(S .d)v(S‘ ) = ‘”(S O)V(S B) = [[“'(S' o) v
"E yer

v(S.0) = JI°(S,,0)~rs(S) = 3 :,,(S)
=

REMARK 8.9. Let us mention that the definition of a pseudodirect product
includes also trivial decompositions of the following type:

Let C* €% and ‘(", .er be an arbitrary partition of S¥u C*: then

(S, 8) = J]*(CL, 9)
rer
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As a matter of fact. if (S, 0)= [J[”(S,. d). then, in view of Lemmas 8. 7 and 8. 6,
am r

i

there are substructures (7, 4) =(S,, ) such that

~

(S, 8)= ﬂ"(f., d) and | 3% - 3%,
vEr yer ° i

ReMARK 8. 10, For the purpose of this remark only, the symbol @ replaces a
(fixed) symbol out of the following four ones: >7. 3P [J* [IP. We can easily

see that if (S.0) =09 (S,.d) and, for every y€T, (S,.08)=2J(S,,.d), then
rer 'IGH ’
(5, 0)=C(S,,, 0).2%)

rer

neH
In the case of a (pseudo) direct product, this is due to a rather general definition
of a kernel substructure. Also, splitting the class of ,,factors™ (S,. ) in an arbitrary
way into disjoint subclasses and replacing the factors (S,, d) that enter into each

of these subclasses by their union we obtain a new decomposition of (S. d) (of the
same kind as the original one).

So far we have dealt with decompositions of a given GA-dependence struc-
ture. In the sequel, we shall form a new GA-dependence structure from given struc-
tures by construction of their direct union.

Theorem 8. 11. Let (S.:.. 0.), YT, be a family of GA-dependence structures. Let
S be a disjoint union of sets T,, y€TI', such that there is a one-to-one mapping ¢, of
T, onto S, for every ycT. Define a binary relation 6 on S in the following way

YETAXET, AXERS~([x, X]€3 — [¢,(x), ¢, (X 0 T)]€3,).
Then, (S. 0) is a GA-dependence structure — the direct union of (S..9,):

(8.8)= 32(S,,4,). %)
ver

Proor. Clearly. for every y I, the subset '.F of S with the (restricted) relation
o on it is a GA-dependence structure (7, d) (..isomorphic™ to (S,.d,)). Further-

more,
SN={ 7TV, SS=UTS,
yer ver

and taking S¢={J 7%, it is a routine to check the requisite postulates and we con-
..Er

clude that (S.d) is a GA-dependence structure.

%) There is possible to consider also . refinements™ which need not be of the same type as
the original decomposition.

24) In fact, (S, 0) is, in accordance with Definition 8. 3. a direct union of the GA-depen-
dence substructures (7., ) — which are .isomorphic™ to (5., d.) in the following sense:

XET, A XCT, = ([x. X1€0 == [, (x). ¢, (X)] €9.).
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Finally, for an element x<7, and an arbitrary XY= S (even not necessarily
independent) such that [x, X]€4, we have evidently

[x, X\. U T)=I[xXnT,]€s,

el (ya)

and 7. is a é-closed subset of (S. d) for every y<I. In view of Definition 8. 3, the
theorem follows.

REMARK &.2. Now, we are in possession to construct the examples of GA-
dependence structures mentioned in the previous § 7, Remark 7.2 and Remark

T:18.
In Remark 7. 2. we introduced, for any natural n =3, a GA-dependence struc-
ture (S,.d,). If we put
(‘s_t-')' 0} - A.SD(‘S_‘". (i"l?
nEl

then, on the basis of Remark 7. 2, it is easy te find, for any natural number n,,
a subset 4= S, such that

cltn=1(4) = clm(4) = clim+1(4),

The following example illustrates that both parts of the condition (vii) do
not depend on (i)—(vi) (in Remark 7. 18, it was shown that the first part does not
depend). Consider, for a cardinal number a=X,. a countable family of GA-de-

pendence structures (S, x, d).
Sen = (aB) U (@)ser, card (T) = a,
defined in Remark 7. 18, and take the direct union

(S 0) — '\n(Sﬂﬂ o).

n=

Then, besides the first part of (vii) (which is not satisfied in any ..factor” (3‘.,.,,. 0))
also the second one fails to hold: for, /=(ag),- is evidently a countable inde-
pendent subset and C = U (@%).er 1s a canonic system such that C<cl(/7) and

card (C)=a=> Ry = card (/).2%)

§ 9. Some applications

In this short final section, we shall deal with some illustrations of the intro-
duced general concepts on concrete GA-dependence structures, mainly on abelian
groups:*®) for some particular results we shall refer to the author’s paper [5].

%) The example can be slightly generalized so that, for arbitrary two cardinal numbers a = b,
there are 7€ & and Ce (@ such that C Ccl(I) and card (C) =a = b=card (/).
26) Many results could be easily formulated for modules over principal ideal rings.
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Let G be an abelian group and H a subgroup of G. Define the binary relation
dy on G in the following way

(0n) gEGAK=G—~([g K)oy - (g)n(KUH )L H).2)

Then, G}, = H and G3, =@. Taking the set of all the elements g of G such that
the corresponding cosets g+ H of G modulo H are of infinite or prime power or-
der as a canonic subset G§;,,*®) it is a routine to check that d, is a GA-dependence
relation on G. Thus, for any group G and its subgroup H, we have a well-defined
invariant — the og-rank of G: ry,(G) (comp. [26], [4] and [6], where also some
other invariants of G derived from it are considered). There is a very close relation
between the GA-dependence structures (G, dy) and (G/H, 6,,,): in fact,

FaylG) =15, (G/H).

Although this special case of a group dependence relation is a rather typical
.representation” of our general concept of a GA-dependence structure, it has
some additional particular properties. E. g., it is easy to see that the property des-
cribed by (iv) is satisfied without the assumption /<3, that — as to the first part
of (v) — there is for every element g a single element in a canonic set such that
g depends on it and that also (vii) is fulfilled. On the other hand, even in this parti-
cular case of the group dependence relation &, the assumption C<J in the second
part of (v) and, generally, the restriction to consider cardinalities of independent
subsets only (as mentioned in Remark 7. 19) is essential.

Consider, for a moment, a fixed (group) GA-dependence structure (G, o).
If G” is a subgroup of G such that H S G" =G, then there corresponds a substruc-
ture (G', oy) of (G, d,) to G’ (in the sense of § 8). There is, of course, no need for
G’ to be a subgroup of G in order to form (together with d,) a substructure of
(G, 0y). but every subset of G containing / does not form it. Thus, e. g. the subset
(6g,. l(]go,-lgu 35g,) of the group GA-dependence structure (G, d.,), Where
G, =1(gp) 1s a cyclic group of order 210. with the relation d,, on it (being .,isomor-
phic” to the example 5. in § 5) does not.

The properties of the closure operation K —~cl(K) were studied in detail in
[5]: in particular, it was shown there that, in difference to the general case. cl'*'(K)
i1s o,-closed for any subset K= G.

Further, let G be a H-direct sum of its subgroups G, y€I, i. e.

(G, yer=G and G, N{(G er~ms=H for every 7,.
Then, _
‘(!‘. (i”) - HP(_G.;.. ()‘”}
ver

and _
riy(G) = o Fay(G)).
ver

27) For anon-empty subset K of a group G. the symbol (K denotes the subgroup of G gene-
rated by K.

%) The set of all g € G such that g+ H is of infinite or prime order in the quotient group
G/H is another suitable choice of a canonic subset.
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Also, denoting by 7, the subgroup of G of all the elements g such that a multiple
ng belongs to H for a suitable natural n, we can easily see that (G, dy) is a pseudo-
direct union of (7T}, d,) and (G . Ty, é,). As a matter of fact, this is the only non-
trivial decomposition of this type of (G, d,) (see [5]).
If H is a neat subgroup of G29), then there is a maximal canonic system C*
of (G, d,) such that
geC*AngeH—-ng = 0.

Thus, (G. 9, is a pseudodirect product of (H, d4,) and (C*, d,) and therefore
J"ém'(G) = rd(nj(H)+ I'é”{G) == rﬂ|(||{H) s !‘d'"j(G,"HL

In fact, if r;  (G) is finite, then, on the contrary, the latter equality implies that
H is neat in G (see [4]).
As an immediate consequence of these results we get the well-known equality

‘rﬂ(n)((;} = rdun(c-'l T) : Z rtj.;nl( Tf’)'
P

where 7 is the maximal torsion subgroup of G and T, its primary components.
We have considered the dependence in abelian groups as a relation on the

set of all their elements. Alternatively, it can be defined on the family S(G) of all
the subgroups of G by

LES(G)ASES(G)~([L, £)€dh ~ LA U KVH)ELH),

kel

thus expressing directly whether a group union of subgroups is their direct sum
or not (comp. I. KapLaNsky [10]).

The ,,linear”” dependence in abelian groups, used e. g. in the KUROSH™ monograph
[13] (corresponding to our relation é, in G, where 7 is the maximal torsion sub-
group of G) is, alike the dependence in vector spaces, the algebraic dependence,
the inclusion etc., covered by the (generalized) VAN DER WAERDEN'S axiomatic
system, as mentioned in the introduction. Roughly speaking, these dependence
relations are those GA-dependence relations which (in the notation of §2) fulfil
the property (v) without the restrictions /€3 and C€3 RS, i. e. for any finite
IS S and CC S.30)
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