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On the convergence of series of iterates

By M. A. McKIERNAN (Waterloo, Ontario)

Introduction
Let f(x) be an analytic function of the complex argument x. Define the integral
iterates f1")(x) of f(x) recursively by:
MIx)=x, f+N(x)=f{f™M(x)} for n=0,1,2,....

Hence f©+')(x) is defined at x if and only if f1")(x) is in the domain of f. It is well
known ([1]) that functions g(x) defined by series of the form

n

(1 g(x) = %an Z ( )t.— pyr-ro fii(x)},

=

r

for analytic @, have applications to functional equations and related fields. 1t =1
and f(x) = x+1, then (1) reduces to

g(x) = 5‘ a,A"P(x).
n=10

If f=1 and f(x) =i"\‘ while @(x)=wx, then (1) becomes the factorial series

+1
5 Clrnle =5
g(x) = ..'='>‘o z(z+1)...(z+n) s A A X

It was first noted by CAvLEY ([2]) and SCHRODER ([3]) that the series

2) 2.: s(s — l),..('s-~n+ 1) i,(n) (— 1yr= 7 (x),
n=0 n. r=0\V

when suitably convergent, converge to the generalized iterates f1*)(x), for arbitrary
real or complex s. Similarly, by formally differentiating (2) with respect to s and
evaluating at s =0, one would conjecture ([4]) that the series

ei=1ptt L in e
N e N — Pyl
3) 2 g (r)( 1)~ ft(x),

when convergent. converges to a function L(x) satisfying the functional differential
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equation (for a particularly interesting application of this equation, see [5])
(4) L{f(x)} = L(x)-f(x).

The convergence of the series £ a, /")(x), that is the case when f =0and ®(x) =x
in (1), was exhaustively studied by G. JuLia ([6]). The iterative properties of the
sum function f1)(x) of the series (2) were studied by C. BourLer ([7]), essentially
assuming convergence.

Let @!-'l(x) denote the inverse function of the analytic function @(x). By
substituting @~ '(x) into both sides of (1) and replacing ®f/@!-'l by a new f. one
is led to consider the particular case

(f) (= By ="J I (x),

since (@fP-")rM=aflripl-1l. The present paper develops some necessary and
some sufficient conditions for the uniform convergence of (5) when f(x) is analytic
about x,, and f(x,)=x,. It will be assumed at first that x, =0 since the general
case is readily obtained from this case by a simple translation.

[‘»/J §
L=

(&)

a,

n=0 r

Preliminary theorems of iteration theory ([8])

Considerable use will be made of the following well known results from the
theory of iteration.

Basic Theorem: Given a function f(x), analytic about x =0 and satisfying f(0)=0,
f(0)=ua where 0 < |x| <1. Then there exists a 0 =0 and a unique function F(x), the

Schréder function for f(x), satisfying:
(i) F(x)= lim a~"-f"x), the sequence converging uniformly in some neigh-

n— e

bourhood of x=0;
(ii) F(x) is analytic about x =0, F(0)=0 and F'(0)=1;
(iii) the inverse function, F'-'N(x), exists analytic about x =0 and F'-'Yx)=

= > ¢ X", uniformly convergent in |x| =, where ¢, =1:
et n / 1

(iv) F(x) satisfies the Schrider equation F{f'\(x)} =ua - F(x), whence

) = 3 e [FO,

convergent for |F(x)|=p¢ and all integer r =0;
(v) the function ®(x; z) defined by

D(x;z) = 3 z-0 gl (x)

is analytic in the entire complex plane except for simple poles at those z =a", n=1, 2, ...
for which ¢, #0, and z=0 if these poles are not finite in number.



32 M. A. McKiernan

Since the coefficient ¢; =1 0. the generating function @®(x:z) always has a
simple pole at z ==, Further, since " approaches 0 with n when 0 < x| < 1, if @(x: 2)
1s analytic at z=0 then @(x:z) must be a rational function of z, having only a
finite number of poles in the extended plane. If @(x;z) is not a rational function
of =, then z =0 is an essential singularity, a limit point of simple poles.

With the series (5) we associate the series

(6) h(z) = 2> a,(z— p)", convergent say for z—fi =r.

n=0
It will be shown that the convergence or divergence of the series (5) is essentially
determined by the behaviour of the series (6) at the poles of the generating function
P(x;z).

For simplicity, throughout the remainder of this paper the symbols /4(z), @(x: )
F(x), ¢,, 0 and r will always have the above meaning relative to f(x), which is assu-
med to satisfy the hypotheses of the Basic Theorem.

By forming the convex hull of the singularities of @(x; z) it is clear that there
will be at least one singularity z, of ®(x: z) such that the distance from f to z, is
not exceeded by the distance from f to any other singularity of ®(x;z). Hence
2o=0 or z,=o* for some k such that ¢, #0, and |z, —f| = |«" — | for all n for
which ¢, #0. It has already been shown [9] that if |z, — | <=r, then (5) converges.
The peresent paper extends this result, and includes the case |z, —fi| = r and
2o — 8l =r.

Principal results
Since the proofs of theorems | and 2 below are lengthy. They will be presented
after the proof of theorem 4.

Theorem 1. A sufficient condition that (5) converge uniformly in x, for
|F(x)| = o, is that the series (6) converge uniformly on the set of singularities of ®(x; z).
If = =0 is a limit point of singularities of ®(x; z), and if (6) converges in |z —f§, =|p/,
whence z =0 is on the circle of convergence of (6). then a sufficient condition for (5)
10 convergence uniformly in |F(x)| =ola/"*! is that

N .
(i) for some v=0, N~ Za,,ﬁ"'i be bounded in N, and that
In=1

(i1) the singularities of ®(x: z), except = =0, lie interior to the intersection of
the region |z —f| = |B| and the angular sector defined by

argf—n/2+e=argz=argff+n/2—¢
for some &=0.

Proor, (postponed).

Theorem 2. Assume that there exists a K such that ¢y =0 whence 2® is a simple
pole of the generating function. and that for sonme 0 =0 =1,

0ak — B =z —B| for any singularity = =% of ®(x:2).

If 2% lies outside the circle of convergence of (6), then the series (5) diverges for all
X satisfving |F(x)| = o, with the exception of those x for which F(x)=0.
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PrOOF. (postponed).

Corollary 1. The condition that »'' =" |@,f"| be bounded in n for some v=0,
or the condition that Xa,f" be Cesaro summable (C, v) for some v=>0, implies the
condition (i) of theorem 1.

Proo¥. That summability (C, v) implies condition (i) is well known [10], as
is the first condition since, if bounded by P,

%
N N
N-* > ap"|=N-" 2 n'-"|a,p"|n"~' = PN-" {l +[x"“ dx} &
n=1 | -

n=1

o i1+(>—1)N""}, q.e.d.

Theorem 3. For real x, O<=x-—=1, the Cayley— Schroder series (2) converges
uniformly in |F(x)| = oa if s=0, and uniformly in |F(x)|=0x~**' if s<0.

; . s ) 3 :
Proor. Since a Newton series E( )a,, converges in a half line s=s5,, it
n

suffices to prove the theorem for s = —5 where s=0. In terms of s the Cayley —
Schréder series becomes

'E' A ‘é'—|+") <] 1 —1y=rfirlf v
" ”( . _r_%(r)( =0 (x),

and since Z (— 1)"[5_:I Tn' is summable [I1] (C.5) for 5=0, it is sufficient by
n=>0 \

corollary 1 to choose v=35. Finally, since 0 =x <1, it follows that all «" are in the

interval [0, 2], and since =1, the poles of @(x; z) must lie in the angular sector
specified in theorem 1, q.e.d.

Theorem 4. Forreal —1<=u-=0, if f(x) satisfies the further property that f( — x)=
= —f(x), then the continuation ([9]) of the Cayley— Schroder series

A

converges uniformly in |F(x)|=p\x| for s=0, and uniformly in |F(x)|=gla|~**"'
for 5 <=0.

PROOF. Again it is sufficient to assume 50, so let s = —5 where s =0, and
the series in (7) becomes

—iny < i r_(S_‘-{:}_Q ) z n Sy
" n;'; nI(s)I'(n) r‘;i; (r)(+l) ).
But since [11]
oL PR e A
LT L) e BTG
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it follows again by corollary 1 that v may be chosen v =5. It remains to show that
the poles of @(x; z) lie in the appropriate angular sector, where in this case f = — 1.
But since f(x) is odd, by induction we have

Jo(=x) = fM{-f(x)} = —fM{f(x)} = —f**+11(x),

whence all f")(x) are odd, and by the Basic Theorem (i) it follows that F(x), and
hence Ff‘“(x), is also odd. Hence ¢, =0 when 7 is even, while —1 <2z <0 implies
—1<=0"<0 when 7 is odd, that is, when ¢, #0. Hence the poles of ®(x: z) lie in
the proper angular sector, q.e. d.

It should be noted that the series (7) also represents the generalized iterates

S¥)(x) since
={(=D+x+D} =e*{l -(x+1)}* = ei** Z“(:)(— 1)r(x+ 1)

n=0
While the iterative character of these series can be shown directly from the series
themselves, as in [7], it will be easier to show these properties after presenting the
relations required for the proofs of theorems 1 and 2. At that time the convergence
of the series (3), and its relation to the functional differential equation (4) will be
discussed.

PROOF OF THEOREMS | AND 2:

Lemma 1. If f(x) satisfies the hypotheses of the basic theorem, then

(12) 3( )(—m" ) = 3 culam— BRIFCOI"
and hence
» a2 (f) - = 3 { > a,,@xm—ﬁ)"} (For,

for all |F(x)|=o.

Proor. Both (12) and (13) are finite sums of the expansion of the Basic Theorem
(iv) which is convergent for |F(x)| =g, q.e.d.

In view of (13), the proof of the first part of theorem 1 is ciear, for if the partial

sums 5‘ a,,(oc"'—ﬂ)” are uniformly bounded for all N and all m for which ¢, =0,

then (13) can be expected to converge. Similarly if the series (6) diverges at some

ok for which ¢x #0, then at least one term in the series (13) becomes unbounded

and the series can be excepted to diverge. We now proceed with the details.
Specifically set

(]4) G(M N \) ﬁ' C { .i, ﬂﬂ{ﬁf""—ﬁ)”} [F(x)]m

or equivalently
M

(14) G(M,N,x) = 3 ¢, (am)+1 { j a,(a™— ﬁ)"} [x =0+ 1 F(x)).
n=0

=1
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If now (6) converges uniformly at all 2™ for which ¢,, #0, then the partial sums
X a,(x™— B)" are uniformly bounded at these «™, so that there exists a »=0 such
that _
” .
# a,,{a"'—[f)"l_'—EP for all N and all m, for which ¢, #0.

n=0

Applying this to (14), it follows that, for [F(x) =0

u ! =
I {Z a,,(:x"' }[F(_\,)]m_ = Z [cwl @™ P,

which converges. By the Weiterstrass M test it follows that lim G(M, N, x) converges
Mo

uniformly in N and in x, for |F(x) = ¢. Further, since (6) converges at the «™ for
which ¢,, #0, it follows that lim G(M, N, x) exists for all M, uniformly in |F(x) =

N

Hence
lim 2 ~ ( )( By-"fi1(x) = lim lim G(M, N, x) = lim lim G(M, N, x)=
N== n=1 r=0 Naw Ma= M-a= Na=

= lim Z ey (™) [F()]™,

M-wm=1

which converges uniformly in |F(x)| = g since /i(a") is bounded when ¢, #0. This
proves the first part of theorem 1. To prove the second part of theorem 1, we need:

Lemma 2. Given an analytic function h(z) whose expansion k(ﬂ-Za,,(- mn"
about z=f converges for |z—p|<=|B|. If

&
(15) N-v > a,p, for some v=0,

r=

N
is bounded for all N, then z**"h(z) and =*** > a/ z — B) are uniformly bounded for

r=l
all N and all z within the intersection of some neighbourhood of z =0 and the angular
sector

(16) argf+n/2—e=argz=argf—n/2+¢

for some ¢=0.

Proor. Let P denote an upper bound of (15), then using ABeL’s identity

nl | s '{_‘aﬁr) n n+ 1l
_l__] + " ﬁ '__ Iy +1 | l“:l " ! % :'_B :‘_‘b’ ] y
P ""”( j )' o 8 e {(_ﬁ*) "(T) %

| N-=1 = " - N
< Slvt1 =Pl s y __'_l_f rv | —B l
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and for z within the circle of convergence |z — fi| =|f|. by setting z=pf(1 —y) or
equivalently y = ﬁ—;}-:—, it follows that y/<1 and that the inequality may be
written <

(17 -2P|ﬁ1"+'{—1;:} A=y Z iyl

But as a particular case of PRINGSHEIM's theorem (for example see [11], p. 180.)
it follows that

lim (1--|y)*+* > a*|yl"
I¥it1 n=1

exists, bounded, and hence since

11—y

de] 3]
is bounded (for example [10], p. 438.) in the angular sector —n/2+e=arg(l —y)=
=n/2 —¢, it follows that (17) is uniformly bounded for all y in this sector and in
some neighbourhood of y=1. But since z = (1 —y), y in this region implies z
satisfies (16). Since the partial sums are uniformly bounded, clearly z**'h(z) is
also bounded, q.e.d.

If, as is assumed in the hypotheses of theorem I, those 2" for which ¢, =0 lie
in the region described in lemma 2, and if (15) holds, then

@t 3 a e py

is uniformly bounded, say by P,, for all N and all n for which ¢, = 0. Hence. using
(14). we have that the terms of G(M, N, x) are bounded by

M M

2‘1 |Cl Py Ja =+ D F(x)|™ = P, El |cml @™

when |F(x)| = ola|/**'. Hence using the Weiterstrass M-test, it follows that
lim G(M, N, x) exists, uniformly in N and in x for |F(x)| = g|x/**'. Further, for
M=

any given M, all the o", n= M, for which ¢, #0 lie inside the circle of convergence

of h(z), so that lim G(M, N, x) exists for every M, uniformly for |F(x)| = olx|**".

Neteo

Hence as before

lim ﬁ,' a, Zn' ( )(— py-rftli(x) = hm ImG(M, N, x) = lim IimG(M, N, x)=

Neto n=0 r=0 Neoaw M- M—= N
= lim 5‘ {.m(qm)v+ 1 h(xm} [1 v=1 F‘(‘_)]m
Mo m_
But again by lemma 2, (2™)** 'h(cx’") is bounded. say by P, and for |F(x)| = p/2**",

this last series is majorized by v |,/ 0™ P, which converges. This proves theorem 1.,
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To prove theorem 2, we need the

Lemma 3. (General KOeNIG's Theorem). Let f(x) satisfy the hypothesis of the
Basic Theorem. Assume that there exists a K such that cx #0 and that, for some
0=0=<l,

02X — B| = |a"— B| whenever c,#0.

Ler

Then :
Iim —-g"(f)r = cx[F(x))X
- far—gp M

uniformly in |F(x)| = p.
Proor. It follows from (12) that for |F(x) = o,

n ‘) k: | bl L m__ n g i
.(_,‘E*Eiﬁy —cx[F(x)] i = !mz,' el F(X)] {%‘jg} =6

1]cm|9ﬁ
m#K

ms=

and since 0 <=0 <1, the lemma follows, q.e¢. d.

In the particular case that =0, then g,(x)=f")x) and, since 0= x| <1 it
follows that 0|x| =|«"| for all n=1, for 0 =|z|, whence we may choose K=1 and
obtain KOENIG's theorem, that is, Basic Theorem (i).

Lemma 4. Under the hypothesis of lemma 3,
lim |g,(x)"/"| = |aX — B

for all x satisfying |F(x)|=¢ and F(x) #0.

Proor. Since ¢, #0, and F(x)=0 it follows that

im Lin 180 _ Lo 1 K| =
'11141'1“1’ - In Py limm —Eln lex [F(x))*| =0
from which the lemma follows, q.e. d.
We may now prove theorem 2 as follows. Since the radius of convergence of
h(z)=Za,(z—P)" is r, it follows that

o o ’ 1
lim|Va, = —.
r

n—s=o

In view of lemma 4, it follows that, for [F(x)|=¢ and F(x)=0,

— K — |
lim |a,g,(x)]'" = lim |@,/'"-lim | g,(x)|'" = iir—ﬁ'.
s o s e
Hence by the Cauchy root test, if |x* — 8| =r, the series X a,g,(x), that is the series
(5). diverges for all x satisfying |F(x) =9 and F(x)#0. This completes the proof
of theorem 2.
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Properties of the series

Theorem 5. Let f(x) be analytic about 0=f(0), and f'(0)== for real 0=x=1.
Then the series

(3) ﬁ: il (") (— 1)~ f)(x)

n r=0\TF

converges uniformly in |F(x)|=oa'*®, for any ¢=0, to an analytic function L(x),
where
F(x)
(]8) L(r)—ln OI'F—\,(;}.
and L(x) satisfies the equation
(19) L{f(x)} = L(x)-f(x).

PRrOOF. As in theorem 3, the singularities in z of the generating function @(x; z)
all lie in the interval [0, «] on the real axis. Since in this case ff=1, and since the

" —1

series Z(’f) converges, the v of theorem 1 may be chosen v = &¢=0. Hence

(3) converges uniformly in |F(x)| = ga'** to an analytic function L(x). But by (12),
each term of this series can be expanded as a power series in F(x) each convergent
for | F(x)| = g, and hence also for |F(x)|= pa'**. Hence by the Weierstrass double
series theorem, the order of summation may be interchanged, which yields

L= > ({ ~ -(’—nl)-" (" — ﬁ)"} FQI" = —Ina- S me, [FOOI™.

m=1 n=1 m=1

But since

x = f10(x) = E CulFCO)",

m=1

differentiation term by term shows that (18) holds. Finally, since F{f(x)} =xF(x)
while F'{f(x)}-f(x) =2F'(x), clearly (19) follows, q. e. d.

Theorem 6. /f f(x) is analytic abour 0=/(0), and [ (0)=x for real 0—x—1,
then the functions f*Nx) defined by

) o) = (“‘) j(”)(, = f1 (),
n=0\MN/r=0\I

the series being uniformly convergent in |F(x)| = paz**"' if s =0, |F(x)| =0z if s =0,
satisfy the relations

(1) F{ft)(x)} =a*F(x)
(ii) M)} =f1+(x),
where clearly if s is a positive integer, (2) reduces to the integral iterate of f(x).

Proor. It is sufficient to prove (i) since F[~'l(x) exists. As in the proof of
theorem 5, each term of (2) can be expanded into the power series in F(x) given in
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(12). and the order of summation interchanged for x within the region of uniform
convergence of (2). But then we obtain

o= 3 t‘m{ ¥ (s) (" — 1)"}{F (1",

m=1 n=0\N

and since 0 =x =1, this becomes, in view of Basic Theorem (iii),
fBl(x) = 21 cul* F(X))™ = FI-1{a*F(x)}, q. e. d.

Clearly, as in theorem 4, similar theorems hold for f = —1 and for f(0) =a
where — 1 =2<0, provided f( —x) = —f(x).
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