On the convergence of series of iterates

By M. A. McKIERNAN (Waterloo, Ontario)

Introduction

Let f(x) be an analytic function of the complex argument x. Define the integral iterates $f^{[n]}(x)$ of f(x) recursively by:

$$f^{[0]}(x) = x$$
, $f^{[n+1]}(x) = f\{f^{[n]}(x)\}$ for $n = 0, 1, 2, ...$

Hence $f^{[n+1]}(x)$ is defined at x if and only if $f^{[n]}(x)$ is in the domain of f. It is well known ([1]) that functions g(x) defined by series of the form

(1)
$$g(x) = \sum_{n=0}^{\infty} a_n \sum_{r=0}^{n} \binom{n}{r} (-\beta)^{n-r} \Phi \{ f^{[r]}(x) \},$$

for analytic Φ , have applications to functional equations and related fields. If $\beta = 1$ and f(x) = x + 1, then (1) reduces to

$$g(x) = \sum_{n=0}^{\infty} a_n \Delta^n \Phi(x).$$

If $\beta = 1$ and $f(x) = \frac{x}{x+1}$ while $\Phi(x) = x$, then (1) becomes the factorial series

$$g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n! a_n}{z(z+1)...(z+n)}$$
 where $z = \frac{1}{x}$.

It was first noted by CAYLEY ([2]) and SCHRÖDER ([3]) that the series

(2)
$$\sum_{n=0}^{\infty} \frac{s(s-1)...(s-n+1)}{n!} \sum_{r=0}^{n} {n \choose r} (-1)^{n-r} f^{[r]}(x),$$

when suitably convergent, converge to the generalized iterates $f^{[s]}(x)$, for arbitrary real or complex s. Similarly, by formally differentiating (2) with respect to s and evaluating at s=0, one would conjecture ([4]) that the series

(3)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{r=0}^{n} \binom{n}{r} (-1)^{r-r} f^{(r)}(x),$$

when convergent, converges to a function L(x) satisfying the functional differential

equation (for a particularly interesting application of this equation, see [5])

$$L\{f(x)\} = L(x) \cdot f'(x).$$

The convergence of the series Σ $a_n f^{[n]}(x)$, that is the case when $\beta = 0$ and $\Phi(x) = x$ in (1), was exhaustively studied by G. Julia ([6]). The iterative properties of the sum function $f^{[s]}(x)$ of the series (2) were studied by C. Bourlet ([7]), essentially assuming convergence.

Let $\Phi^{[-1]}(x)$ denote the inverse function of the analytic function $\Phi(x)$. By substituting $\Phi^{[-1]}(x)$ into both sides of (1) and replacing $\Phi f \Phi^{[-1]}$ by a new f, one is led to consider the particular case

(5)
$$\sum_{n=0}^{\infty} a_n \sum_{r=0}^{n} \binom{n}{r} (-\beta)^{n-r} f^{[r]}(x),$$

since $(\Phi f \Phi^{[-1]})^{[r]} = \Phi f^{[r]} \Phi^{[-1]}$. The present paper develops some necessary and some sufficient conditions for the uniform convergence of (5) when f(x) is analytic about x_0 , and $f(x_0) = x_0$. It will be assumed at first that $x_0 = 0$ since the general case is readily obtained from this case by a simple translation.

Preliminary theorems of iteration theory ([8])

Considerable use will be made of the following well known results from the theory of iteration.

Basic Theorem: Given a function f(x), analytic about x=0 and satisfying f(0)=0, $f'(0)=\alpha$ where $0<|\alpha|<1$. Then there exists a $\varrho>0$ and a unique function F(x), the Schröder function for f(x), satisfying:

- (i) $F(x) = \lim_{n \to \infty} \alpha^{-n} \cdot f^{[n]}(x)$, the sequence converging uniformly in some neighbourhood of x = 0;
 - (ii) F(x) is analytic about x = 0, F(0) = 0 and F'(0) = 1;
 - (iii) the inverse function, $F^{[-1]}(x)$, exists analytic about x=0 and $F^{[-1]}(x)=$
- $=\sum_{n=0}^{\infty} c_n x^n$, uniformly convergent in $|x| \leq \varrho$, where $c_1 = 1$;
 - (iv) F(x) satisfies the Schröder equation $F\{f^{[r]}(x)\} = \alpha^r \cdot F(x)$, whence

$$f^{[r]}(x) = \sum_{n=1}^{\infty} c_n \alpha^{rn} [F(x)]^n,$$

convergent for $|F(x)| \le \varrho$ and all integer $r \ge 0$;

(v) the function $\Phi(x; z)$ defined by

$$\Phi(x; z) = \sum_{n=0}^{\infty} z^{-(n+1)} \cdot f^{[n]}(x)$$

is analytic in the entire complex plane except for simple poles at those $z = \alpha^n$, n = 1, 2, ... for which $c_n \neq 0$, and z = 0 if these poles are not finite in number.

Since the coefficient $c_1 = 1 \neq 0$, the generating function $\Phi(x; z)$ always has a simple pole at $z = \alpha$. Further, since α^n approaches 0 with n when $0 < |\alpha| < 1$, if $\Phi(x; z)$ is analytic at z = 0 then $\Phi(x; z)$ must be a rational function of z, having only a finite number of poles in the extended plane. If $\Phi(x; z)$ is not a rational function of z, then z = 0 is an essential singularity, a limit point of simple poles.

With the series (5) we associate the series

(6)
$$h(z) = \sum_{n=0}^{\infty} a_n (z - \beta)^n, \text{ convergent say for } |z - \beta| < r.$$

It will be shown that the convergence or divergence of the series (5) is essentially determined by the behaviour of the series (6) at the poles of the generating function $\Phi(x; z)$.

For simplicity, throughout the remainder of this paper the symbols h(z), $\Phi(x; z)$ F(x), c_n , ϱ and r will always have the above meaning relative to f(x), which is assumed to satisfy the hypotheses of the Basic Theorem.

By forming the convex hull of the singularities of $\Phi(x;z)$ it is clear that there will be at least one singularity z_0 of $\Phi(x;z)$ such that the distance from β to z_0 is not exceeded by the distance from β to any other singularity of $\Phi(x;z)$. Hence $z_0=0$ or $z_0=\alpha^k$ for some k such that $c_k\neq 0$, and $|z_0-\beta| \ge |\alpha^n-\beta|$ for all n for which $c_n\neq 0$. It has already been shown [9] that if $|z_0-\beta| < r$, then (5) converges. The peresent paper extends this result, and includes the case $|z_0-\beta|=r$ and $|z_0-\beta|>r$.

Principal results

Since the proofs of theorems 1 and 2 below are lengthy. They will be presented after the proof of theorem 4.

Theorem 1. A sufficient condition that (5) converge uniformly in x, for $|F(x)| \le \varrho$, is that the series (6) converge uniformly on the set of singularities of $\Phi(x;z)$. If z=0 is a limit point of singularities of $\Phi(x;z)$, and if (6) converges in $|z-\beta| < |\beta|$, whence z=0 is on the circle of convergence of (6), then a sufficient condition for (5) to convergence uniformly in $|F(x)| \le \varrho |\alpha|^{\nu+1}$ is that

(i) for some
$$v > 0$$
, $N^{-v} \left| \sum_{n=1}^{N} a_n \beta^n \right|$ be bounded in N, and that

(ii) the singularities of $\Phi(x; z)$, except z = 0, lie interior to the intersection of the region $|z - \beta| < |\beta|$ and the angular sector defined by

$$\arg \beta - \pi/2 + \varepsilon \leq \arg z \leq \arg \beta + \pi/2 - \varepsilon$$

for some $\varepsilon > 0$.

Proof. (postponed).

Theorem 2. Assume that there exists a K such that $c_K \neq 0$ whence α^K is a simple pole of the generating function, and that for some $0 < \theta < 1$,

$$\theta|\alpha^K - \beta| \ge |z - \beta|$$
 for any singularity $z \ne \alpha^K$ of $\Phi(x; z)$.

If α^{K} lies outside the circle of convergence of (6), then the series (5) diverges for all x satisfying $|F(x)| \leq \varrho$, with the exception of those x for which F(x) = 0.

PROOF. (postponed).

Corollary 1. The condition that $n^{(1-v)}|a_n\beta^n|$ be bounded in n for some $v \neq 0$, or the condition that $\sum a_n\beta^n$ be Cesaro summable (C, v) for some v > 0, implies the condition (i) of theorem 1.

PROOF. That summability (C, v) implies condition (i) is well known [10], as is the first condition since, if bounded by P,

$$\left| N^{-v} \sum_{n=1}^{N} a_n \beta^n \right| \le N^{-v} \sum_{n=1}^{N} n^{(1-v)} |a_n \beta^n| n^{v-1} \le P N^{-v} \left\{ 1 + \int_{1}^{N} x^{v-1} dx \right\} =$$

$$= \frac{P}{v} \left\{ 1 + (v-1)N^{-v} \right\}, \quad \text{q. e. d.}$$

Theorem 3. For real α , $0 < \alpha < 1$, the Cayley—Schröder series (2) converges uniformly in $|F(x)| \le \varrho \alpha$ if $s \ge 0$, and uniformly in $|F(x)| \le \varrho \alpha^{-s+1}$ if s < 0.

PROOF. Since a Newton series $\Sigma {s \choose n} a_n$ converges in a half line $s > s_0$, it suffices to prove the theorem for $s = -\bar{s}$ where $\bar{s} > 0$. In terms of \bar{s} the Cayley—Schröder series becomes

$$\sum_{n=0}^{\infty} (-1)^n {s-1+n \choose n} \sum_{r=0}^{n} {n \choose r} (-1)^{n-r} f^{[r]}(x),$$

and since $\sum_{n=0}^{\infty} (-1)^n {\bar{s}-1+n \choose n}$ is summable [11] (C,\bar{s}) for $\bar{s}>0$, it is sufficient by corollary 1 to choose $v=\bar{s}$. Finally, since $0<\alpha<1$, it follows that all α^n are in the interval $[0,\alpha]$, and since $\beta=1$, the poles of $\Phi(x;z)$ must lie in the angular sector specified in theorem 1, q. e. d.

Theorem 4. For real $-1 < \alpha < 0$, if f(x) satisfies the further property that f(-x) = -f(x), then the continuation ([9]) of the Cayley—Schröder series

(7)
$$e^{i\pi s} \sum_{n=0}^{\infty} {s \choose n} (-1)^n \sum_{r=0}^n {n \choose r} (+1)^{n-r} f^{[r]}(x)$$

converges uniformly in $|F(x)| \le \varrho |\alpha|$ for $s \ge 0$, and uniformly in $|F(x)| \le \varrho |\alpha|^{-s+1}$ for s < 0.

PROOF. Again it is sufficient to assume s < 0, so let $s = -\bar{s}$ where $\bar{s} \ge 0$, and the series in (7) becomes

$$e^{-i\pi \tilde{s}} \sum_{n=0}^{\infty} \frac{\Gamma(\tilde{s}+n)}{n\Gamma(\tilde{s})\Gamma(n)} \sum_{r=0}^{n} {n \choose r} (+1)^{n-r} f^{(r)}(x).$$

But since [11]

$$\lim_{n\to\infty}\frac{1}{n^{\bar{s}-1}}\frac{\Gamma(n+\bar{s})}{n\Gamma(n)}=\lim_{n\to\infty}\frac{\Gamma(n+\bar{s})}{n^{\bar{s}}\Gamma(n)}=1$$

it follows again by corollary 1 that v may be chosen $v = \bar{s}$. It remains to show that the poles of $\Phi(x; z)$ lie in the appropriate angular sector, where in this case $\beta = -1$. But since f(x) is odd, by induction we have

$$f^{[n+1]}(-x) = f^{[n]}\{-f(x)\} = -f^{[n]}\{f(x)\} = -f^{[n+1]}(x),$$

whence all $f^{[n]}(x)$ are odd, and by the Basic Theorem (i) it follows that F(x), and hence $F^{[-1]}(x)$, is also odd. Hence $c_n = 0$ when n is even, while $-1 < \alpha < 0$ implies $-1 < \alpha^n < 0$ when n is odd, that is, when $c_n \ne 0$. Hence the poles of $\Phi(x; z)$ lie in the proper angular sector, q. e. d.

It should be noted that the series (7) also represents the generalized iterates

 $f^{[s]}(x)$ since

$$x^{s} = \{(-1) + (x+1)\}^{s} = e^{i\pi s} \{1 - (x+1)\}^{s} = e^{i\pi s} \sum_{n=0}^{\infty} {s \choose n} (-1)^{n} (x+1)^{n}.$$

While the iterative character of these series can be shown directly from the series themselves, as in [7], it will be easier to show these properties after presenting the relations required for the proofs of theorems 1 and 2. At that time the convergence of the series (3), and its relation to the functional differential equation (4) will be discussed.

PROOF OF THEOREMS 1 AND 2:

Lemma 1. If f(x) satisfies the hypotheses of the basic theorem, then

(12)
$$\sum_{r=0}^{n} {n \choose r} (-\beta)^{n-r} f^{[r]}(x) = \sum_{m=1}^{\infty} c_m (\alpha^m - \beta)^n [F(x)]^m,$$

and hence

(13)
$$\sum_{n=0}^{N} a_n \sum_{r=0}^{n} \binom{n}{r} (-\beta)^{n-r} f^{[r]}(x) = \sum_{m=1}^{\infty} c_m \left\{ \sum_{n=0}^{N} a_n (\alpha^m - \beta)^n \right\} [F(x)]^m,$$

for all $|F(x)| \leq \varrho$.

PROOF. Both (12) and (13) are finite sums of the expansion of the Basic Theorem (iv) which is convergent for $|F(x)| \le \varrho$, q. e. d.

In view of (13), the proof of the first part of theorem 1 is clear, for if the partial sums $\sum_{n=0}^{N} a_n (\alpha^m - \beta)^n$ are uniformly bounded for all N and all m for which $c_m \neq 0$, then (13) can be expected to converge. Similarly if the series (6) diverges at some α^K for which $c_K \neq 0$, then at least one term in the series (13) becomes unbounded and the series can be excepted to diverge. We now proceed with the details. Specifically set

(14)
$$G(M, N, x) = \sum_{m=1}^{M} c_m \left\{ \sum_{n=0}^{N} a_n (\alpha^m - \beta)^n \right\} [F(x)]^m$$

or equivalently

(14')
$$G(M, N, x) = \sum_{m=1}^{M} c_m(\alpha^m)^{\nu+1} \left\{ \sum_{n=0}^{N} a_n(\alpha^m - \beta)^n \right\} [\alpha^{-(\nu+1)} F(x)]^m.$$

If now (6) converges uniformly at all α^m for which $c_m \neq 0$, then the partial sums $\sum a_n(\alpha^m - \beta)^n$ are uniformly bounded at these α^m , so that there exists a P > 0 such that

$$\left|\sum_{n=0}^{N} a_n (\alpha^m - \beta)^n\right| \leq P \text{ for all } N \text{ and all } m, \text{ for which } c_m \neq 0.$$

Applying this to (14), it follows that, for $|F(x)| \le \varrho$,

$$\left|\sum_{m=1}^{M} c_m \left\{ \sum_{n=0}^{N} a_n (\alpha^m - \beta)^n \right\} [F(x)]^m \right| \leq \sum_{m=1}^{\infty} |c_m| \varrho^m \cdot P,$$

which converges. By the Weiterstrass M test it follows that $\lim_{M\to\infty} G(M, N, x)$ converges uniformly in N and in x, for $|F(x)| \le \varrho$. Further, since (6) converges at the α^m for which $c_m \ne 0$, it follows that $\lim_{N\to\infty} G(M, N, x)$ exists for all M, uniformly in $|F(x)| \le \varrho$.

$$\lim_{N \to \infty} \sum_{n=1}^{N} a_n \sum_{r=0}^{n} \binom{n}{r} (-\beta)^{n-r} f^{[r]}(x) = \lim_{N \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{N \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} G(M, X) = \lim_{M \to \infty} G(M,$$

which converges uniformly in $|F(x)| \le \varrho$ since $h(\alpha^m)$ is bounded when $c_m \ne 0$. This proves the first part of theorem 1. To prove the second part of theorem 1, we need:

Lemma 2. Given an analytic function h(z) whose expansion $h(z) = \sum_{n=1}^{\infty} a_n (z - \beta)^n$ about $z = \beta$ converges for $|z - \beta| < |\beta|$. If

(15)
$$N^{-\nu} \sum_{r=1}^{N} a_r \beta^r, \text{ for some } \nu > 0,$$

is bounded for all N, then $z^{v+1}h(z)$ and $z^{v+1}\sum_{r=1}^{N}a_r(z-\beta)^r$ are uniformly bounded for all N and all z within the intersection of some neighbourhood of z=0 and the angular sector

(16)
$$\arg \beta + \pi/2 - \varepsilon \ge \arg z \ge \arg \beta - \pi/2 + \varepsilon$$
 for some $\varepsilon > 0$.

PROOF. Let P denote an upper bound of (15), then using ABEL's identity

$$\left| z^{\nu+1} \sum_{n=1}^{N} a_n \beta^n \left(\frac{z-\beta}{\beta} \right)^n \right| = |z|^{\nu+1} \left| \sum_{n=1}^{N-1} \left\{ \frac{\sum_{r=1}^{n} a_r \beta^r}{n^{\nu}} \right\} n^{\nu} \left\{ \left(\frac{z-\beta}{\beta} \right)^n - \left(\frac{z-\beta}{\beta} \right)^{n+1} \right\} + N^{\nu} \left(\frac{z-\beta}{\beta} \right)^N \frac{\sum_{r=1}^{N} a_r \beta^r}{N^{\nu}} \right| \le$$

$$\le P \cdot |z|^{\nu+1} \left\{ \left| 1 - \frac{z-\beta}{\beta} \right| \sum_{n=1}^{N-1} n^{\nu} \left| \frac{z-\beta}{\beta} \right|^n + N^{\nu} \left| \frac{z-\beta}{\beta} \right|^N \right\},$$

and for z within the circle of convergence $|z-\beta| < |\beta|$, by setting $z = \beta(1-y)$ or equivalently $y = \frac{\beta-z}{\beta}$, it follows that |y| < 1 and that the inequality may be written

(17)
$$\leq 2P|\beta|^{\nu+1} \left\{ \frac{|1-y|}{1-|y|} \right\}^{\nu+1} (1-|y|)^{\nu+1} \sum_{n=1}^{\infty} n^{\nu} |y|^{n}$$

But as a particular case of PRINGSHEIM's theorem (for example see [11], p. 180.) it follows that

$$\lim_{|y| \uparrow 1} (1 - |y|)^{v+1} \sum_{n=1}^{\infty} n^{v} |y|^{n}$$

exists, bounded, and hence since

$$\frac{|1-y|}{1-|y|}$$

is bounded (for example [10], p. 438.) in the angular sector $-\pi/2 + \varepsilon \le \arg(1-y) \le \pi/2 - \varepsilon$, it follows that (17) is uniformly bounded for all y in this sector and in some neighbourhood of y=1. But since $z=\beta(1-y)$, y in this region implies z satisfies (16). Since the partial sums are uniformly bounded, clearly $z^{v+1}h(z)$ is also bounded, q. e. d.

If, as is assumed in the hypotheses of theorem 1, those α^n for which $c_n \neq 0$ lie in the region described in lemma 2, and if (15) holds, then

$$(\alpha_n)^{\nu+1} \sum_{r=1}^N a_r (\alpha^n - \beta)^r$$

is uniformly bounded, say by P_1 , for all N and all n for which $c_n \neq 0$. Hence, using (14'), we have that the terms of G(M, N, x) are bounded by

$$\sum_{m=1}^{M} |c_m| P_1 |\alpha^{-(\nu+1)} F(x)|^m \le P_1 \sum_{m=1}^{M} |c_m| \varrho^m$$

when $|F(x)| \leq \varrho |\alpha|^{\nu+1}$. Hence using the Weiterstrass M-test, it follows that $\lim_{M\to\infty} G(M,N,x)$ exists, uniformly in N and in x for $|F(x)| \leq \varrho |\alpha|^{\nu+1}$. Further, for any given M, all the α^n , $n \leq M$, for which $c_n \neq 0$ lie inside the circle of convergence of h(z), so that $\lim_{N\to\infty} G(M,N,x)$ exists for every M, uniformly for $|F(x)| \leq \varrho |\alpha|^{\nu+1}$. Hence as before

$$\lim_{N \to \infty} \sum_{n=0}^{N} a_n \sum_{r=0}^{n} \binom{n}{r} (-\beta)^{n-r} f^{[r]}(x) = \lim_{N \to \infty} \lim_{M \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{N \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{N \to \infty} G(M, N, x) = \lim_{M \to \infty} \lim_{M \to \infty} \sum_{m=1}^{M} c_m (\alpha^m)^{v+1} h(\alpha^m) \cdot [\alpha^{-v-1} F(x)]^m.$$

But again by lemma 2, $(\alpha^m)^{\nu+1}h(\alpha^m)$ is bounded, say by P_2 and for $|F(x)| \le \varrho |\alpha|^{\nu+1}$, this last series is majorized by $\sum_{m=1}^{\infty} |c_m| \varrho^m P_2$ which converges. This proves theorem 1.

To prove theorem 2, we need the

Lemma 3. (General Koenig's Theorem). Let f(x) satisfy the hypothesis of the Basic Theorem. Assume that there exists a K such that $c_K \neq 0$ and that, for some $0 < \theta < 1$,

$$\theta |\alpha^K - \beta| \ge |\alpha^n - \beta|$$
 whenever $c_n \ne 0$.

Let

$$g_n(x) = \sum_{s=0}^n \binom{n}{s} (-\beta)^{n-s} f^{[s]}(x).$$

Then

$$\lim_{n\to\infty} \frac{g_n(x)}{(\alpha^K - \beta)^n} = c_K[F(x)]^K$$

uniformly in $|F(x)| \leq \varrho$.

PROOF. It follows from (12) that for $|F(x)| \le \varrho$,

$$\left|\frac{g_n(x)}{(\alpha^K - \beta)^n} - c_K[F(x)]^K\right| = \left|\sum_{\substack{m=1\\m \neq K}}^{\infty} c_m[F(x)]^m \left\{\frac{\alpha^m - \beta}{\alpha^K - \beta}\right\}^n\right| \le \theta^n \sum_{m=1}^{\infty} |c_m| \varrho^n,$$

and since $0 < \theta < 1$, the lemma follows, q. e. d.

In the particular case that $\beta = 0$, then $g_n(x) = f^{[n]}(x)$ and, since $0 < |\alpha| < 1$ it follows that $\theta |\alpha| \ge |\alpha^n|$ for all n > 1, for $\theta = |\alpha|$, whence we may choose K = 1 and obtain KOENIG's theorem, that is, Basic Theorem (i).

Lemma 4. Under the hypothesis of lemma 3,

$$\lim_{n \to \infty} |g_n(x)^{1/n}| = |\alpha^K - \beta|$$

for all x satisfying $|F(x)| \le \varrho$ and $F(x) \ne 0$.

PROOF. Since $c_K \neq 0$, and $F(x) \neq 0$ it follows that

$$\lim_{n\to\infty}\frac{1}{n}\ln\frac{|g_n(x)|}{|\alpha^K-\beta|^n}=\lim_{n\to\infty}\frac{1}{n}\ln|c_K[F(x)]^K|=0$$

from which the lemma follows, q. e. d.

We may now prove theorem 2 as follows. Since the radius of convergence of $h(z) = \sum a_n(z-\beta)^n$ is r, it follows that

$$\overline{\lim} |\mathring{\sqrt[n]{a_n}}| = \frac{1}{r}$$
.

In view of lemma 4, it follows that, for $|F(x)| \le \varrho$ and $F(x) \ne 0$,

$$\overline{\lim_{n\to\infty}} |a_n g_n(x)|^{1/n} = \overline{\lim_{n\to\infty}} |a_n|^{1/n} \cdot \lim_{n\to\infty} |g_n(x)|^{1/n} = \frac{|\alpha^K - \beta|}{r}.$$

Hence by the Cauchy root test, if $|\alpha^K - \beta| > r$, the series $\sum a_n g_n(x)$, that is the series (5), diverges for all x satisfying $|F(x)| \le \varrho$ and $F(x) \ne 0$. This completes the proof of theorem 2.

Properties of the series

Theorem 5. Let f(x) be analytic about 0=f(0), and $f'(0)=\alpha$ for real $0<\alpha<1$. Then the series

(3)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sum_{r=0}^n \binom{n}{r} (-1)^{n-r} f^{[r]}(x)$$

converges uniformly in $|F(x)| \le \varrho \alpha^{1+\epsilon}$, for any $\epsilon > 0$, to an analytic function L(x), where

(18)
$$L(x) = \ln \alpha \cdot \frac{F(x)}{F'(x)},$$

and L(x) satisfies the equation

(19)
$$L\{f(x)\} = L(x) \cdot f'(x).$$

PROOF. As in theorem 3, the singularities in z of the generating function $\Phi(x; z)$ all lie in the interval $[0, \alpha]$ on the real axis. Since in this case $\beta = 1$, and since the series $\Sigma \frac{(-1)}{n}$ converges, the v of theorem 1 may be chosen $v = \varepsilon > 0$. Hence

(3) converges uniformly in $|F(x)| \le \varrho \alpha^{1+\varepsilon}$ to an analytic function L(x). But by (12), each term of this series can be expanded as a power series in F(x) each convergent for $|F(x)| \le \varrho$, and hence also for $|F(x)| \le \varrho \alpha^{1+\varepsilon}$. Hence by the Weierstrass double series theorem, the order of summation may be interchanged, which yields

$$L(x) = \sum_{m=1}^{\infty} c_m \left\{ \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (\alpha^m - \beta)^n \right\} [F(x)]^m = -\ln \alpha \cdot \sum_{m=1}^{\infty} m c_m [F(x)]^m.$$

But since

$$x = f^{[0]}(x) = \sum_{m=1}^{\infty} c_m [F(x)]^m,$$

differentiation term by term shows that (18) holds. Finally, since $F\{f(x)\} = \alpha F(x)$ while $F'\{f(x)\} \cdot f'(x) = \alpha F'(x)$, clearly (19) follows, q. e. d.

Theorem 6. If f(x) is analytic about 0=f(0), and $f'(0)=\alpha$ for real $0<\alpha<1$, then the functions $f^{[s]}(x)$ defined by

(2)
$$f^{[s]}(x) = \sum_{n=0}^{\infty} {s \choose n} \sum_{r=0}^{n} {n \choose r} (-1)^{n-r} f^{[r]}(x),$$

the series being uniformly convergent in $|F(x)| \le \varrho \alpha^{-s+1}$ if s < 0, $|F(x)| \le \varrho \alpha$ if s > 0, satisfy the relations

(i)
$$F\{f^{[s]}(x)\} = \alpha^s F(x)$$

(ii)
$$f^{[s]}{f^{[t]}(x)} = f^{[s+t]}(x),$$

where clearly if s is a positive integer, (2) reduces to the integral iterate of f(x).

PROOF. It is sufficient to prove (i) since $F^{[-1]}(x)$ exists. As in the proof of theorem 5, each term of (2) can be expanded into the power series in F(x) given in

(12), and the order of summation interchanged for x within the region of uniform convergence of (2). But then we obtain

$$f^{[s]}(x) = \sum_{m=1}^{\infty} c_m \left\{ \sum_{n=0}^{\infty} {s \choose n} (\alpha^m - 1)^n \right\} [F(x)]^m,$$

and since $0 < \alpha < 1$, this becomes, in view of Basic Theorem (iii),

$$f^{[s]}(x) = \sum_{m=1}^{\infty} c_m [\alpha^s F(x)]^m = F^{[-1]} {\{\alpha^s F(x)\}_s}$$
 q. e. d.

Clearly, as in theorem 4, similar theorems hold for $\beta = -1$ and for $f'(0) = \alpha$ where $-1 < \alpha < 0$, provided f(-x) = -f(x).

Bibliography

- [1] S. PINCHERLE, Funktional operationen und -Gleichungen, Encykl. der Math. Wiss., II, 6 II A 11 (1906).
 - M. A. McKiernan, Séries d'itérateurs et leurs applications, C. R. Acad. Sci. Paris 246 (1956), 2331 - 2334.
 - M. A. McKiernan, Le prolongement analytic des séries, C. R. Acad. Sci. Paris 246 (1956), 2564 - 2567.
 - V. Ganapathy Iyer, On a functional equation, J. Indian Math. Soc. 20 (1956), 283-290.
 - B. Schweizer, Remarks on a functional equation, J. Indian Math. Soc. 23 (1959), 97-99. H. Steinhaus, On a certain power series, Prace Mat. I (1955), 276-284.
- [2] A. CAYLEY, Collected Papers, 4.
- [3] E. SCHRÖDER, Über iterierte Funktionen, Math. Ann. 3 (1871) 296-322.
- [4] M. A. McKiernan, The Functional Differential Equation Df=f^[-1], doctoral dissertation, Ill. Inst. of Techn., Chicago (1956).
- [5] P. Erdős and E. Jabotinsky, On Analytic Iteration, J. Analyse Math. 8 (1960-61), 361-376.
- [6] G. Julia, Mémoir sur la convergence des séries formées avec les itérées successives d'une fraction rationnelle, Acta Math. 56 (1930), 149-195.
 - G. Julia, Addition au Mémoir "Sur la convergence des séries formées avec les itérées successives d'une fraction rationnelle", Acta Math. 58 (1932), 407-412.
- [7] C. BOURLET, Sur le probleme de l'itération, Ann. Fac. Sci. Univ. Toulouse, (1) 12 (1898), No. 3, 1 - 12
- [8] P. Montel, Lécons sur les récurrences, Paris, 1957.
- [9] M. A. McKiernan, Le prolongement analytic des séries, C. R. Acad. Sci. Paris 246 (1956), 2564-2567
- [10] P. DIENES, The Taylor-Series, Dover, 1957.
- [11] K. KNOPP, Theorie und Anwendung der unendlichen Reihen, Springer-Verlag, 1947.
- [12] E. W. Hobson, Theory of Functions, I., Dover, 1957.

(Received April 30, 1962.)