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Group embedding and duality in semi groups

N. SANKARAN (Chandigarh)

It 1s known that the collection of all continuous additive homomorphisms of
a given uniform semi-group in the set of non-negative reals (denoted by C*) forms
a semi-group. If instead of C* we take the set C of all the reals then we get a group.
In Theorem | we show that the group embedding of the semi-group of all continuous
additive homomorphisms of a uniform semi-group § with respect to C*, taken
with the symmetric uniform structure is unimorphic to the group of all continuous
additive homomorphisms relative to C. In [1] V. S. KrRISHNAN has established that
the direct sum of the dual semi-groups (dual groups) of a given family of semi-
groups (duals taken relative to C* and C respectively) taken with the asterisk uni-
formity is unimorphic with the dual semi-group (dual group) of the direct product
of the given family of semi-groups. He has also shown that a similar result holds
if the direct sum and direct product are interchanged and appropriate uniformities
are taken. Combining the results of Krishnan and Theorem 1 in this paper, we show
that the group embedding of the direct sum (direct product) of the dual semi-groups
ecach taken with the associated symmetric uniform structure, endowed with the
asterisk uniformity (usual direct product uniformity), is unimorphic with the direct
sum (product) of the dual groups taken with the asterisk (usual direct product)
uniformity and that this direct sum (direct product) is the same as the dual of the
direct product (direct sum) of the given family of semi-groups relative to C and
taken with the asterisk (direct product) uniformity.

By a semi-group (S, +) we mean a commutative, associative cancellable
binary system with an identity element.

A semi-group (S, ) is called a wniform semi-group if it has a (not necessarily
symmetric) uniform structure A ={U,} which is compatible with the semi-group
operation in the following sense:

(x,»eU,, U,€N if and only if (x+z,. y+2)eU,
for each z in S.

A continuous additive homomorphism of a uniform semi-group S in C~
(or in C) is called a character.

The collection of all characters with respect to C* (resp. to C) forms a semi-
group (group) under the operation of addition defined as follows: (f+g)(x) =
= f(x)+g(x), x in S and /. g being any two characters. We prove this in the follow-
ing theorem:

Theorem 1. [f D denotes the collection of all characters of the semi-group S
relative to C* and G is the collection of all characters of S with respect to C, then
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(a) D is embeddable in a group, and (b) the group embedding of D is algebraically
isomorphic to G.

ProoF. Let us first show that D is a semi-group. Trivially the sum of two
(and therefore of a finite number of) continuous additive homomorphisms is again
a continuous additive homomorphism and therefore D is closed with respect
to the addition defined above. This operation in the set of characters is commutative
and assocaitive as the same laws are true for the nonnegative reals. The zero character
is the function which maps all the elements of S onto the zero of C*. For the
concellation laws we proceed as follows:

Let d,,d, be two elements of D. If f+#0 is such thatd, +f = d, +£.((i. e.)
(dy +f)(x) = (dy +f)(x) for all x in S), then we have d,(x) +f(x) = d)(x)+f(x)
and d,(x), d5(x), f(x) being reals with f(x) =0 for all x we have d,(x) =d,(x) for all
xin S, i.e. d,=d,. Thus D is a semi-group.

Set H=(Dx D)/E where E is the relation defined by (x, y) E£(w, v) if and only
if x+v = y+u. This relation can be shown to be an equivalence relation. Defining
addition componentwise we see that H forms a group and that it is the smallest
group that contains an isomorphic image of D which proves (a).

For proving (b) it suffices to show that / is isomorphic to G. For this choose
from each equivalence class in H an element (/, g) and call it distinguished if for
each x in S, f(x) #0 implies g(x) =0 and g(x)#0 implies f(x)=0. We show that
each class can contain only one such distinguished element. If, on the contrary,
(f1, &) and (f;, g,) are equivalent and distinguished, then we have (i) f; +g, =
= f>4+g, and (ii) f(x)#=0 implies g(x)=0 and g,x)=0 implies fi(x)=0, for
i=1, 2. Suppose now f;(x) =0, then we have g,(x) =0 and (i) gives f,(x) +g,(x) =
= f5(x). Since f,(x)#0, fi(x), f2(x) and g,(x) are all non negative, it follows that
f>5(x)#0 and this by (ii) gives that g,(x)=0. Thus whenever f,(x) #0, we have
f>(x) #0, and g,(x) =g,(x)=0. Again from (ii) and (i) we get that if g,(x) <0 then
25(x) #0 and for these x in S, fi(x) =/5(x) =0. Moreover, f,(x)=g,(x)=0 implies
f2(x) =g,(x) =0. Hence we have for all x in S, f,(x)=/5(x) and g,(x) =g,(x) and
this shows that the distinguished element in each class is unique.

If we now associate with each distinguished element (f, g) of H the element
(f—g) of G, then we can see easily that this association is one-to-one. It is also
onto, since for each g in G, the pair (g*, g7) forms a distinguished pair in H where
g* and g~ are defined as follows: g*(x)=g(x) whenever g(x)¢C*, x in S, and
zero otherwise, and g~ (x) = —g(x)if g(x)¢C—C*, and zero otherwise. If (f;, &)
and (f5, h,) corresponds to g, and g, respectively, then the distinguished element
in the class determined by (/) +/5, i, +h;) corresponds to g, +g,. Thus we see
that G and H are algebraically isomorphic. This proves the theorem.

We can make the operations in D and G continuous by suitably prescribing
a nuclear base for the zero element of D and G and for this we introduce the notion
of a topologizing family of subsets of S.

By a rtopologizing family of subsets of S, we mean a collection of non-null
subsets {F,} of § such that (i) each finite subset of S is contained in the family,
(ii) any finite union of subsets of the family also belongs to the family. The class
of finite or compact or totally bounded subsets of S under its uniformity are examples
of topologizing families.
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Let us denote the topologizing family of the uniform semi-group S by §={F,].
Let U={u,} and V={v,} where
u,={x€C*|x <a},
and
ty={x€Cl—a=x=<a),

be the family of neighbourhoods of 0 in C* or C. We define the neighbourhoods
of 0 in D and G as

ta=N(Fs, u)={fED|f(F,)Tu, where F,is in §},
and

l'.'::N(an U«J:{gEG.g(F;)C Ua where F“' is in R}

The group embedding H of D under the uniformity A = {«Z} is only a topolo-
gical semi-group while G under the uniformity U= {2} is a topological group.
In order to make H a topological group, we symmetrize the uniform structure
A and get W = {w2} as

Wa = tta U (a)*

where (u%)* is the collection of all fin H such that the 0 of H is in f+u2.
It can be shown without difficulty that

Up+ (U5)* = 1y ()",
We now prove the following

Theorem 2. The group G with the uniform structure U is unimorphic to H with
the uniformity 2.

ProoF. Let @ denote the algebraic correspondence which associates with each
g in G, a distinguished pair (/. h) in H.

In order to show that @ is uniformly continuous it is enough if we find a ¢
when a w? is given such that @(¢) is contained in wi. Now when a wj is given, we
have a F, from § and a neighbourhood u, of 0 in C*. Let v, be the symmetric asso-
ciate of u, in C. The set of functions that map F, into v, will give the v we are search-
ing for. Because, if g €v} then ®(g)=(h,, h,) where h,, h, are in D such that g(x) =
=hy(x) if g(x)€C*, and —g(x)=h,(x) if g(x)€C— C* so that g(F,) v, implies
that h(F,) v, NC* = u, and h,(F,) —v,(1C* and this is contained in wu,. There-
fore hy, h, are in u,. This means that (h,,0)+(0, &) is in ul+ (u2)* =wi. Thus
D (w2 wi

To show that @-' is uniformly continuous, choose an arbitrary surrounding
tZ. This gives a subset F, from S and v, in C. Let u, = v, 1 C*. Consider the set
of functions of D that take values in u, or 0 when defined over the set F, of S. There
is at least one such function viz. the zero function on S. If f; and f, are two such
functions such that f, is complementary to /5 then the element g of G whose image
is (fy,/>) under @ is such that g €. These (f;, f>) exhaust w%. Therefore @~'(n3) <
—v%. Hence the result.

We need the following concepts for the statement and proof of the next theorems
which are extensions of the above theorem to the direct sum and direct product
of a family of uniform semi-groups.

D35
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DeFINITION. If x is an element of the uniform semi-group (S, ) lying in the
nucleus u;, we define the index of x in u; (denoted by x|u;) to be (3)" if x, 2x, 4x, 8x, ...
. 2"x are all in u; and 2"*'x is not in u; and x\u; is zero if 2"x €u; for all m.

Given a family of uniform semi-groups (S;, ;) where i is in /, an indexing
set, a rectangular uniformity for the direct sum of the semi-groups S; is defined as
the points of the direct sum that lie in the cartesian product of u, where u is chosen
from A; for each i€/1. An asterisk or *-nucleus ([[u')* is determined by those

1

points of (/] u') such that 3 x;u'<1.

We have shown elsewherc ([2] lemma 7) that the group embedding of the
direct product of a given family of semi-groups is isomorphic to the direct product
of the group embeddings of the individual semi-groups belonging to the same
family. With slight modifications it can be shown that the same lemma is valid if
we change the direct product into a direct sum.

Theorem 2 above establishes that G; is isomorphic (in fact unimorphic) to
the group embedding H,; of D;(H; taken with the associated symmetric uniform
structure). Combining this with lemma 1 given below, and the statement made
above, we have the following

Theorem 3. The group completion of the direct sum of duals D; of S; relative
to C* is algebraically isomorphic to the direct sum of the duals G; of S, relative to C
and this direct sum is also the dual of the direct product of S; with respect to C. Further,
the group completion of the direct product of D; is algebraically isomorphic to the
direct product of G; and this is the dual of the direct sum of S; relative to C.

Lemma 1. (Theorem 6 in [1]) If D; is the algebraic dual of the semi-group S,
where i runs over an indexing set I (say ), relative to C* then H D, is the algebraic

dual of Z S; and Z D, is the algebraic dual of H S; with resper_l to C*. (Instead

of consrdermg the duais' with respect to C* we can consider them as duals relative
to C also).

In order to prove the above theorem, when we take into consideration the
continuity of the operation in the different semi-groups occuring in the theorem.
we recall a theorem in [1]. Using the above notations we state the theorem without
proof.

Theorem 4. The semi-group ED,‘ with the associated asterisk wniformity is the
topological dual of H S; with the a;r'rec.' product uniformity, relative to C* and : G,
with the associated ;Jsrerisk uniformity, is the topological dual of [I S; taken 'wfffr
the direct product uniformity, when the dual is taken relative to C. :

We remark that whenever we take the group completion of the semi-group.
we take only the symmetric uniformity for the group. For proving the topological
analogue of Theorem 3, it is enough if we establish a 1—1 correspondence between
the rectangular nuclei of the group completion of the direct sum of a family of
uniform semi-groups (each taken with the symmetric associate of the given uniformity)
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and the rectangular nucleus of the direct sum of the group completions of the given
family of semi-groups. The proof will be complete if we further show that the index
of an element in the group completion, of a given semi-group relative to a fixed
nucleus, is equal to the index of the corresponding element in the group relative
to the corresponding nucleus under an isomorphic mapping.

We shall now state the following

Theorem 5. If'S; is an indexed fumily of wiiform semi-groups and D;(G;) deno-
tes the dual of S, relative to C*(C), then the group embedding of > D; (taken with
i

the symmetric associate) having the asterisk uniformity is unimorphic with the direct
sum of the groups G, taken with the asterisk uniformity.

ProOF. We shall now show that there is a 1--1 correspondence between the
rectangular nuclei of the direct sum of groups G and the rectangular nuclei of
the direct sum of the group embedding of the dual semi-groups each taken with the
symmetric associate of the asymmetric uniformity.

Let §; be a topologizing family of subsets of S;, and N(F}, u,) be the asymmetric
uniformity for the dual semi-group D;. Let M(F!,v,) be the symmetric associate
of N(F!,u,) and the group completion H, of D; be endowed with this uniform
structure Mi; (say). Let G; be the group of characters of S; relative to C and let
B,={Vi,} be the uniformity for G; given by the same topologising family 7§, of
S;. Then we show that to each M} , there corresponds a V} , and conversely so that
the rectangular nucleus formed out of these surroundings are in 1 1 correspondence.

Let M, be given in H;. Then we have a member F} from the topologising
family §; of S; and a neighbourhood u, of 0 in C*. Now v, =u, ' J(u,)* = u,+ (u,)*
If hic M., then we can find /i, hi in D; such that (h%, hi) forms a distinguished
pair. Associate with this distinguished pair an element g’ from G,. Then from the
fact that h'e M; , it follows that h\(F%) —u, and hi(F)) Cu,, so that (h}, h5)(F)) =
= (I, O)(F}) + (0, i W F}) —u, + (u,)* which implies that g'(F!)—v,. Thus g'¢ V; .
As h' exhauts M} , we have for each M}, a V} .

If now given a ¥ , we have to find a Mj ,. When a Vj , is given we have a Fj
from the topologising family of S; and a neighbourhood ¥, of 0 in C. Let g'€ Vj ,.
From the algebraic correspondence between G; and H, it follows that for this gf
there is a distinguished pair (4, h}) and each component maps the whole of Fj
into v, C* =u, so that hi(Fj) and hy(F;) ~wu,. Thus we have a M} , from the
uniformity i, of H,.

Thus there is a 1—1 correspondence between nuclei in G; with the nuclei in
H; and this is true for each i€ /. Therefore it follows that [[ M} , corresponds to

I
]I Vi .. Hence the rectangular uniformities in > G; and > H,; are in 1—1 corres-
] 1 ]
pondence.

For proving the correspondence between the asterisk uniformities it is enough
if we show that the index of an element g of G; with respect to some V; , is equal
to the index of (4}, ki) of H; with respect to M} , where (A%, i) and M} , correspond
to g' and V! , respectively. For then the sum of the indices in both the cases are
the same and therefore the neighbourhoods in both the asterisk uniformities corres-
pond to one another.
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Let the index of g’ relative to a V} , be (4)". Then 2"-gi(F}) — v, and there exists
atleast one element x in Fi, such that 2"*'-g/(x)4v,. Denote this x by ¥. There
is no loss of generality in assuming that g'(X) is non-negative. Now gi(X) =h{(X)
and hi(X) =0 where (h{, hi) corresponds to g'. Clearly 2"-g'(X) = 2"-h{(X)€cv,NC™ =
=u, and 2"*'.g{(X)4v, implies that 2"*'.hl(X)4u, and 2"-hj(X)€u, for all m.
Therefore 2"-(h, h5)(X)€u, while 2"+ (hi-h%)(X)Gu,. Hence 2"(h\, h%)(F)) —u,
and 2"*'(h{, hi)(F)) & u,. Thus the index of (h/, hi) relative to M/ , is (4)".

Hence the asterisk uniformities in 3 G; and > H; correspond to each other
and thus complete the proof of the theorem.

We now state topological analogue of the above theorem for the direct sum
of semi-groups and their duals.

Theorem 6. /f S, is an indexed family of uniform semi-groups, D; and G, denote
the duals of S, relative to C* and C respectively, then the dual of ‘f S; taken with the

asterisk uniformity (it being understood that each S; has symmetric uniform structure )
has ]] D; and H G; as the topological duals relative to C*+ and C respectively. The

topo)'ogies Jor H D, and H G, are the direct product topologies. Further the group

embedding of H D, with the associated symmetric uniform structure is unimorphic
i

with [] G;.
i

The first part of the theorem is the content of Theorem 8§ of [1] while the second
part follows in view of Theorem 1 of this paper and lemma 7 of [2].

The author thanks Professor V. S. KrISHNAN for his guidance and help in the
preparation of this paper.
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