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Associative functions and abstract semigroups

By B. SCHWEIZER {Tucson, Ariz.) and A. SKLAR (Chicago, 1ll.)

Introduction

In a previous paper [7] we studied the question of characterizing a class of
associative functions on the unit square which had arisen in our work on statistical
metric spaces ([4], [5]) and which we called r-norms (see Definition 1 below). By
making use of some beautiful results of J. Acziv (see [1], p. 176—189), we showed
that a large and important subclass of 7-norms, the strict t-norms (see Definition 2
below), could be characterized completely in terms of ordinary real functions —
1. .. functions of a single real variable. The converses to these characterization
theorems then enabled us to construct strict -norms at will; in particular, we showed
how any strict 7-norm could be obtained from any other strict 7-norm by means
of a simple, well-determined transformation (see (I1.4)). We further pointed out
that these latter results were closely related to certain abstract theorems of A. C.
Crimescu [3] on transformations of semigroups into semigroups; that these results
could be extended to yield characterizations for a much wider class of 7-norms
than the strict -norms; and that this extension in turn led to various abstract gene-
ralizations of Crimescu’s results which are of considerable interest in their own
right.

This paper is devoted to the detailed discussion of the above mentioned exten-
sions and generalizations. It is divided into two parts — the first concrete, the second
abstract.

The first part begins with a theorem (Theorem 1 below) which was motivated
by a result of CLiMescu ([3], Theorem II) and is simultaneously a generalization
of Theorem 6 of [7] and of a concrete version of Crimescu's Theorem II. This
theorem enables us to extend various results of [7] to arbitrary, i. e., not necessarily
strict, 7-norms and to thereby greatly enlarge the class of 7-norms which can be
characterized in terms of monotone real functions. It should be noted, however,
that we still cannot characterize all -norms in this way: indeed, it seems unlikely
to us that any such universal characterization exists.

The second part of this paper is devoted to abstract semigroups. We begin
with two theorems (Theorems 4 and 5) which are successive generalisations of
CrLimescu’s Theorem I1. The first is the abstract analogue of Theorem 1 the second,
which is more recondite, requires the concept of a right-subinverse of a mapping
which we introduced in a different connection in [6]. Both of these theorems provide
methods for generating semigroups from other semigroups. These methods are rela-



70 B. Schweizer and A. Sklar

ted to, but quite different in effect from, standard homomorphism theory. In par-
ticular, their application can yield a semigroup which is ,larger”, rather than
,smaller”, than the original semigroup. The connection with standard homomor-
phism theory is brought out in Theorem 7.

The paper concludes with an appendix in which we give another method of
constructing /-norms from f-norms. This method is not directly related to the
methods considered earlier in the paper; but it too is motivated by, and con-
nected with a theorem of Crimescu ([3], Theorem V). It is included in this paper
because it leads to a class of f-norms which seem certain to play an important role
in the further study of statistical metric spaces.

We conclude this introduction with some definitions and notations which will
be used in the body of the paper.

Definition 1. A triangular norm (briefly, a t-norm) is a 2-place function from
the closed unit square [0, 1] [0, 1] to the closed unit interval [0, 1] which satisfies
the following conditions:

0.1) 70,0=0,T(a,1)=T(1, a)=a. ( Boundary Conditions)
(0.2) T(a,b)=T(c,d) whenever a=c,b=d. ( Monotonicity )

(0.3) T(a,b)=T(b,a) ( Symmetry )

(0.4) T(T(a,b),c)=T(a, T(b, c)). ( Associativity )

Definition 2. A strict t-norm is a f-norm which is continuous and strictly
increasing in both places, i. e., satisfies the conditions:

(0, 5) T(a, b)=lim I'(¢, b)=1im T'(a, d).
c—a d—b
(0, 6) T(a,b)<T(c,b) for O0=a<c=1,b=0.

T(a,b)y<=T(a,d) for 0=b<=d=1,a=0.

Of particular importance are the r-norms 7y, 7,,, Prod, and Min, defined
respectively as follows:
g: b=1.
Tli'(a\ h)-_ b& 3= I\

(0, otherwise:;
T,(a,b) = max(a+b—1,0):
Prod (a, b)=a-b:

a, a=h,

Min(a,b)z{b fo 2

Of these, only Prod is a strict r-norm. Moreover, as shown in [4], every f-norm
T satisfies the inequality

(0.7) Tw(a. b)= T(a. b) = Min (a. b).
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Definition 3. A (2-dimensional) copulais a continuous 2-place function T
from [0, 1] [0, 1] to [0, 1] satisfying (0. 1), (0.2) and the following condition:

(0. 8) T(a,d)+ T(c,b)=T(a,b)+ T(c,d), whenever a=c, b=d.
Every copula T satisfies the inequality
T,(a, b)=T(a, b)=Min (a, b).

Thus Min, Prod and 7,, are copulas, whereas 7y is not.

For any function f, we shall denote the domain of f by Dom f and the range
of f by Ran f. If f and g are one-place functions, we shall often denote the composite
of fand g by fg. Similarly, we shall sometimes find it convenient to denote the value
of fat x, 1. e., f(x), simply by fx. The letter j will denote the identity function on the
reals, 1. e., the function defined by: j(x) = x for any real number x. Correspondingly,
for any set 4 (whose elements may or may not be real numbers) j, is the identity
function on A, i.e., j,(x)=x for any element x in A.

1. Construction of /-norms from /-norms

In our previous paper on t-norms [7] it was shown that if /1 is a one-place function
which is defined, continuous and strictly increasing on the closed unit interval
[0, 1] with /(0)=0 and A(1)=1, and if A" is the inverse of h, then the 2-place
function T given by

(1.0) T(a, by =h="'(h(a)-h(b)) = h~"(Prod (h(a), h(b)))

1s a strict f-norm. The function h was called a multiplicative generator of the t-norm
T. It was further shown that a 2-place function T is a strict t-norm if and only if it
is derivable from the strict t-norm Prod via (1. 0) through the intermediary of a multip-
licative generator h.

Our first aim in this section is to extend the ..if”” part of the preceding italicized
statement to arbitrary f-norms and to a more general class of functions h. We begin
with two lemmas.

Lemma 1. Let T be a t-norm, and let 1, be the closed interval [0, ay], where
0=a, = 1. If one of the two numbers a. b is in 1, and the other is in [0, 1], then T(a, b)
is in 1.

Proor. In view of (0. 7)., T(a.b)=ay€l,.

Lemma 2. Ler a, be a number such that 0=ay< 1, I, the interval [0, a,] and
I, the interval [a,, 1]. Let h be a continuous, strictly increasing function from [0, 1]
onto I, (whence h(0)=a, and h(1)=1) and let h* be the function defined by

0, .\'El'(H
(1. 1) M= @), xel,

where h=" is the inverse of h. Then

(1.2) h*(h(x)) = x, for every x€[0, 1],
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and

(1. 3) h(h*(x)) = {

g -TE [09
X x€li.

ProOOF. For every x&[0, 1] we have h(x)c/,. Hence
h*(h(x))=h="(h(x))=x.

If xel,, then A*(x)=0 and h(h*(.\'))=h{0)=a0; if xel,, then h(h=(x))=
=h(h='(x))=x.

Theorem 1. If S is a t-norm and 1y, I, h and h* are defined as in Lemma 2,
then the 2-place function T defined on [0, 1] [0, 1] by

(1.4) T(a, b)=h*(S(h(a), h(b)))
is a t-norm.

ProOF. The symmetry (0. 3) of 7 is an immediate consequence of that of §.
Similarly, the monotonicity (0. 2) of T follows directly from the monotonicity of
S. h and h*. As for the boundary conditions (0. 1), we have

7(0, 0) =h*(S(h(0), h(0))) =h*(S(ay, as)) =0,
since by Lemma 1, S(ay, a,) is in /y; and
T(a. 1)=T(1, a)=h*(S(h(1), h(a)))=h*(S(1, h(a))) =h*(h(a)) = a.

by Lemma 2.
To prove that T satisfies the associativity condition (0. 4) we first note that
for any a, b, ¢ in Dom h we have either

(A):S(h(a), h(b))el,, or (B):S(h(a), h(b))ely:
and either
(C): S(h(b), h(c))el,, or (D): S(h(b), h(c)€l,;

and that consequently we have four cases to consider — namely (4 & C), (A4~ D).
(B4 C) and (B& D).

(A& C): In this case, using (l. 3), the associativity of S, and omitting super-
fluous parentheses, we have

T(T(a, b), ¢) = h* S(hT(a, b), hc) =h* S(hh* S(ha, hb), he) = h* S(S(ha, hb). he) =
=h*S(ha, S(hb, he))=h* S(ha, hh* S(hb, he)) =h* S(ha, hT(b, ¢)) = T(a. T(b, c)).
(A& D): As in the previous case, we obtain
T(T(a, b), c) =h*S(ha, S(hb, hc)) =h* S(ha, 1).

But now 7 = S(hb, hc) € I, so that by Lemma 1, S(ha, 1) € I,. Hence by the definition
of h*, h*S(ha, t)=T(T(a, b), c)=0. Next,

T (b, c)=h*S(hb, he) =h~t =0.
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Hence,
T(a, T(b, ¢)) = T(a, 0) =h* S(ha, h0) = h* S(ha, ay) =0,

since again, by Lemma 1, S(ha, ay)€1,.

(B C): This follows on reversing the roles of 7T(7(a, b), ¢) and T(a. T(b.c))
and arguing as in (4 & D).

(B%4 D): In this case T(a, b)=T(b, c)=0 and the second half of the argument
in (A& D) yields T(a, T(b, ¢))=T(T(a, b), c)=0.

Thus (0. 4) holds in all cases and the theorem is proved.

Corollary. Let f be a continuous, strictly decreasing function on [0, 1] such
that f(0) =b, =0 (we permit b, to be infinite) and f(1) =0. Let f/* be the function
defined on the extended half-line [0, =] by

y f1(x), x€[0, h),
(1. 3) f (x)= {0, X €[bo, =],
where /=! is the inverse of f. Then the function T defined on [0, 1] [0, 1] by
(1. 6) T(a, b) =f*(f(a) + f(b))
IS a f-norm.

Proor. Let & and h* be the functions defined by
1.7 h=exp(—f)=e 1, h*=f*(—log);

and let /,=[0,e "], I, =[e ", 1). Then h, h*, I, and I, satisfy the hypotheses
of Theorem 1. Moreover we have

(1. 8) f=—logh, f*=h*(e-)=h* exp(—)).
Thus (1. 6) may be written as

(1.9) T(a, b)=h* exp { —(—log h(a) —log h(b))| =
=h*(h(a), h(b)) =h*(Prod (h(a), h(b))).

Since Prod is a r-norm, all the conditions of Theorem 1 are satisfied and the conclusion
follows.

In conformity with and as an extension of the terminology of [7], the function
/ appearing in (1. 6) will be called an additive generator of the t-norm 7. Corres-
pondingly, the function 4 appearing in (1. 9) is a multiplicative generator of T. Any
r-norm possessing an additive generator also possesses a multiplicative generator
and conversely, the two being connected by (1.7) and (I. 8).

In [7] (Theorems 9 and 10) it was shown that if 7 is a strict f-norm and f an
additive generator of 7, then 7 is a copula if and only if f is convex. With the aid
of the preceding corollary this result may be extended as follows:

Theorem 2. If a t-norm T has an additive generator f, then T is a copula if and
only if f is convex.
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ProoOF. With a little care, the proof of Theorem 9 of [7] can be taken over
verbatim. The care is necessitated by the fact that, when b, is finite, /* is a proper
extension of f—! rather than simply f~! itself. However, it follows from the defi-
nition of f* that the convexity of f always implies the convexity of f*, that the
composite f*f=j 15, and that, on Ran [, ff* =jg,, ;. With these facts in mind,
the proof of Theorem 9 given in [7] can be carried over to the present case without
change.

Before proceeding to some applications of these theorems, we call attention
to a result which shows that the transformation (1. 4) need not always yield someth-
ing new.

Theorem 3. The t-norms Ty, and Min are invariant under the transformation
(1. 4), i. e., for every pair of functions h, h* satisfyving the conditions of Theorem 1,

we have

h*= Min (ha, hb) = Min (a, b).

Proor. Consider first Ty, and let T(a. b) =h* Ty (ha, hb). By Theorem 1, T is

a r-norm. Therefore, if a=1, then T(a, b) =b=Ty(a, b). Similarly, if b=1, then

T(a b) =a=Ty(a, b). Finally, if neither a nor b is | then neither sia nor hb can be
. whence Ty (ha, hb)=0 and

T(a, b) =h*0=0= Ty (a, b).

As for Min, because of the monotonicity of # we have Min (/1(a), h(b)) =h(Min (a, b)).
Consequently by (1. 2).

h* Min (h(a), h(b)) =h*h Min (a, b) =Min (a, b).

As an example showing how the results of this section extend and improve
those obtained in [7], consider the one-parameter family of functions 4, defined by:

4!‘:,,(.\')=exp(—:7 (l~.\"”)), p=0, D=x=1,

ho(x)=x=lim h,(x), Desx=l
p=0

where it should be noted that p is now allowed to range over the set of all real
numbers rather than only the set of all positive numbers as in [7] (p. 175, Example (d)).
It is readily verified that the functions /, satisfy the conditions of Theorem I and
that the functions A}, are given by:

hp(x)=(1—plogx)-1», p=0,

ho(x) =x=Iim h,(x),
p-0
2 (1—plogx)~tr, x=ellr,
hp (,\') = { 0" ¥ gel-p_ pP= 0_.
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Now. taking S=Prod in (I.4), we obtain the following family of t-norms T,:

T,(a,b) =(a~P+b-r—1)-"Ir p=0,
To(a, b) = lim T, (a, b)=a-b=Prod (a, b)

p—0

@ P+b-P—1)-1r, g=p 4 b-r=1
A=, a-ripr=1f P70

For p =0, the r-norms are strict — this follows from the results of [7] quoted at
the beginning of this section. However, for p =0, they are definitely not strict. In
particular 7_; =T,,. Thus 7, possesses multiplicative generators and, by virtue
of (1. 8), additive generators as well.

Additive generators f, corresponding to the multiplicative generators 4, are
readilv found by use of (1.8). We have:

fola) = %(_a""—v 1), p#0, 0=g=1,

fola) = —loga, 0=a=1;
fr(@)=(1+pa)-''r, p=0,a=0,
fo(a)=e"", a=0,

= (1+pa)-'r, 0=a=-1/p,
_f,,(a)—{o, a=-—1/p, s

By differentiating f, twice, we easily verify the fact that £, is convex if and only if
p = — 1. Consequently, by Theorem 2 the 7-norms T, are copulas if and only if p = — 1.
One final note about the r-norms 7,. We have

lim T, (a, b) = Min (a, b),

p—o=

lim T,(a, b)= Ty (a, b),

p—b—m
so each of the r-norms 7, , 7,,, Prod, Min is either a member of the family {7}
or a limit of members of this family.

2. Transformations of abstract semigroups

To extend some of the results of the preceding section to abstract semigroups
we shall have to consider several semigroups at the same time. It is therefore con-
venient to designate semigroups by ordered pairs, e. g. (B, T'), where B denotes
the set of elements of the semigroup and 7 is the semigroup operation, i.e., T is
a mapping from B B into B which satisfies the associativity condition (0. 4). We
also need the concept of an ideal (cf. [2], p. 5) which is defined as follows:

Definition 4. Anideal /, of a semigroup (A4, S) is a (possibly empty) subset
of A such that for any element a in /, and any element b in A, both S(a, b) and
S(b. a) are in [,.
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Note that in this terminology Lemma 1 can be simply restated to read: The
interval 7, =[0, ao] is an ideal of the semigroup ([0, 1], T').

Lemma 3. Let A be a non-empty set and I, a subset of A. If I, is empty, let a
be any element of A; otherwise, let a, be an element of 1,. In either case, let I, be the
set (A —1y)\U{ay}. Let h be an invertible (i. e., one-one) mapping from a set B onto
Iy, and 2, that element of B for which h(2,) =aq. Finally let h* be the mapping with
domain A and range B defined by:

Y %o =h~"(ao), x€lp,
i h='(x), el

where h="' is the inverse of h. Then

2.2) h*(h(x))=x, for every xCcB,
ay, x€ly,
.3 *(x)) =
(2. 3) h(h*(x)) {.\', SEE

Proor. The same as the proof of Lemma 2, with the interval [0, 1] replaced
by the set B, and the number 0 by the element a,.

Theorem 4. Let (A, S) be a semigroup and 1, an ideal of (A, S). Let a,. I,. B. h
and h* be defined as in Lemma 3. Then the mapping T from B X B into B defined by

(2. 4) T(a, b) =h* (S(ha, hb))

is associative and (B, T) is a semigroup.

ProoF. The same as the second part of the proof of Theorem 1 (i. e., the proof
of the associativity condition (0. 4)) with the phrase ,,using (1. 3)" replaced by the
phrase ,,using (2. 3)” and the phrase ,,Lemma 1" replaced by the phrase ..the fact
that /7, is an ideal of (A4, S)".

Corollary. If B=1, and h=j, . then T(a,b)=h*(S(a, b)) and (/,.7) is a
semigroup.

Note that (/,, T) is not in general a subsemigroup of (4, S).

Theorem 4 is thus the abstract analogue of Theorem 1. It is also a direct genera-
lization of the following theorem of CLiMESCU ([3], Theorem I1): Jf (A, S)is a semi-
group, if h is a one-one mapping from A into A, and if T is defined on A > A by (2. 4).
then (A, T) is a semigroup.

Cummescu’s Theorem 11 is the special case of Theorem 4 in which the ideal
I, is either empty or has only one element; for it is in precisely these cases that [,
coincides with 4 and A* with A~!. Correspondingly. since /* is definitely not inver-
tible when /, contains mcre than one element, Theorem 4 is a proper generalization
of Theorem II, a generalization in which an invertible function is replaced by a
function which is the union of an invertible and a constant function. We can gene-
ralize further: namely we can show that the conclusion of Theorem 4 does not
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depend on the assumption that the mapping A& from B to /, is invertible. To do this
we need the concept of a right—subinverse [6].

Definition 5. A right-subinverse of a mapping / is a mapping g such that
(2..5) Domg=Ran/f, Rang&Dom/. and fg=jr. s

I. e., f(g(x))=x for every xcRanf.

Any mapping, whether invertible (one-one) or not, has at least one right-sub-
inverse. This follows from and (as is shown in [8], p. 108 and [10]) is in fact
equivalent to the Axiom of Choice. Moreover, if g is a right-subinverse of f, then
g is invertible and the inverse of g is the (generally proper) restriction of f to
Ran g. This latter restriction can be written as fjg,,,. Accordingly, we have

(2' 6) M}IRN‘IQ ':'jRung.

We also note in passing that by virtue of (1. 3) and (2. 2) the function 4 in Theorems |
and 4 is a right-subinverse of /i*; and that, correspondingly the function f of the
corollary to Theorem 1 is a right-subinverse of f*.

Lemma 4. Let A, I,, ay. and I, be as in Lemma 3. Let h be an arbitrary (not
necessarily invertible ) mapping from a set B onto I,, and let h* be a mapping with
domain A and range a subset of B, defined as follows:

e (8 xed,
= glag)=ay, x€1,,

where g is any right- subinverse of h. Then the mappings h and h* so defined satisfy
(2. 3) and, in addition, are relative inverses (2], i. e., satisfy

(2. 7) h*hh*(x) =h*(x) for every x in A,
(2. 8) hh*h(x)=h(x) for every x in B.
Proor. By Definition 5, for any x in /, we have

hh* (X) = Jran (X)) =J;,(X) = x.

In particular then, h(x,) = hh*(a,) = a,. Hence for xin /,,, we have hh* (x) = h(z,) = a,.
This yields (2. 3). To obtain (2. 7), apply & to both sides of (2. 3). If x is in /,, the
result is immediate; if x is in /,, (2. 7) follows from the fact that i*(x) =x,. Lastly,
(2. 8) follows from equation (2. 3) and the fact that A(x) is in 7,.

Theorem 5. Let (A, S). 1y, ay and I, be as in Theorem 4, and let B, it and h*
be as defined in Lemma 4. Then the mapping T from B B into B defined by (2. 4)
is associative and (B, T) is a semigroup.

Proor. Once we have observed that, by virtue of Lemma 4, the mapping$
h and h* satisfy (2. 3). the proof of the theorem is verbatim the same as the proof
of Theorem 4.

Theorem 5 shows how, by working with right-subinverses, it is possible to
prove a result which heretofore would have required some sort of invertibility
assumption. In this respect it is a typical illustration of the usefulness of the general
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concept of right-subinverse.') However, as far as the central problem of Section |
— the construction of 7-norms from 7-norms — is concerned, Theorem 5, des-
pite the fact that it is a proper generalization, does not lead to any results
beyond those of Theorem 4. The reasons for this are to be found in the following
lemma and theorem, which are of interest in their own right.

Lemma 5. Ler (A, S), (B, T), h and h* be as in Theorem 5. If there is an element
ug of (B, T) such that T(a, ug)=a for all a in B, or an element u, of (B, T) such
that T(u,,a)=a for all a in B, then Ran h* = B= Dom h.

PROOF. Assume that ug exists. Then for any @ in B, we have
a=T(a, ug) =h*S(ha, huy).

Thus a is a value of the mapping #* and this means that Ran /i* = B. The same
conclusion also follows from the existence of u,.

N. B. The element wy is a right-unit, and u, a left-unit, of the semigroup (B, 7).
Right and left units need not be unique, but it is a standard theorem that if a semi-
group has both a right-unit gz and a left-unit u,, then u, =ug and the semigroup
has a unique unit. The t-norms of Definition 1 all have the unit 1 by virtue of (0. 1).

Theorem 6. Let (A, S), 1y, 1,, (B, T), h and h* be as in Theorem 5. If the semi-
group (B, T) has either a right-unit ug or a left-unit u,, then the mapping h is inver-
tible, and its inverse is h*j, , the restriction of h* 1o the set I,.

PrOOF. The mapping /i*j, is a right-subinverse of /4. It is therefore invertible
and, by virtue of the remarks following Definition 5, its inverse is the mapping
hjgan wejy,- Now by the definition of A*, Ran Ah*j, =Ran h*, and by Lemma 5

we have Ran 4#* =Dom h. Hence the inverse of 7*j, is hjpgy, , = h. Since the inverse
of an invertible mapping is itself invertible, its inverse being the original mapping,
the conclusion of the theorem follows.

Corollary. If the ideal /7, is empty or has only one element, then h(ug) is a
right-unit of (A4, S) and A(u,) is a left-unit of (A, S).

PROOF. In this case 7, =A.

Theorem 6 and its corollary thus account for the invertibility of the functions
h and f of Theorem | and its corollary, since as remarked above, all 7-norms have
units. We also note in passing that if, in Lemma 2, & is assumed to be increasing
but not necessarily strictly increasing and if 4* is defined to agree with some right-
subinverse of & on /; and to have the constant value 0 on /,, then it follows from
Theorem 5 that the function T defined by (1. 4) has all the properties of a r-norm
except: T(a, 1)=T(1, a)=a.

Finally, we turn to a connection between these extensions of CLiMEscU's theo-
rem and homomorphism theory. In our notation, the standard definitions (cf. [2].
p. 9) take the following form: (A, S)is a homomorph of (B, T) if there is a mapping
h, with domain B and range A, such that

(2.9) h(T(a, b)) = S(ha, hb)

') Right-subinverses play a very important role in our study of the algebra of functions 6].
It is also worth observing that any antiderivative is a right-subinverse of the derivative operator:
and that any branch of the complex logarithm is a right-subinverse of the complex exponential
function.
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for all a. b in B. The mapping h is a homomorphism. An invertible homomorphism
is an isomorphism, and two semigroups (or more generally, two groupoids) connected
via (2.9) by an isomorphism are isomorphic. We then have:

Theorem 7. Let (A, S), Iy, I,. (B, T), h, i" and a, be as in Theorem 5. Define
a mapping S, with domain I, x< 1, by
S, =hh*S,
(i.e., Sy(x,y)=hh*S(x,y) for all x,y in I,). Then (I,, S,) is a semigroup which is

a homomorph of (B, T) under the homomorphism h. Furthermore., T and S, are
connected by (2. 4), i. e., for every a, b in B, we have

(2. 10) T(a, b) =h*S,(ha, hb).
Proor. Applying 4 to both sides of (2. 4), we obtain
(2. 11) hT(a, b) = hh* S(ha, hb) = S,(ha, hb),

whence, by (2.9), (/;, S;) is a homomorph of (B, T); and since it is a standard
fact that a homomorphic image of a semigroup is a semigroup, (/,, S,) is a semi-
group. Next, applying #* to (2. 11), we obtain

(2.12) h*hT(a, b) =h*S,(ha, hb).
Now using (2. 4) and (2.7), we have
h*hT(a, b) = h*hh* S(ha, hb)
=h* S(ha, hb)
= T(a, b).
Combining this with (2. 12), we obtain (2. 10) and the theorem is proved.

Corollary. If / is invertible (in particular, if (B, T)has a right-unit or a left-unit).
then (B, T) and (/,, §,) are isomorphic.

It should again be noted that, although 7, is a subset of 4, (/,, S;) need not
be a subsemigroup of (A4, S).

Appendix: Another construction of r-norms from r-norms

In his paper [3] CLiMescu also proved the following:

Theorem V. Let (A, F) and (B, G) be semigroups. If the sets A and B are dis-
Joint and if U is the mapping defined on (A|J) B)x(A'JB) by

"F(x,y), x€A,y€A,
x. X€A, yEB,
U X, 9 =

(%7) | XEB, ye 4,
G(x, ), X€B, yEB,

then (A'JB, U) is a semigroup.
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This theorem leads quite readily to another construction for f-norms from
7-norms which proceeds by piecing together three 7-norms rather than transforming
one.

Theorem 8. Let T, and T, be t-norms and /. a number in the open interval (0, 1).
Let U, be a mapping on the square [0, 2) X [0, ) defined by

U(a, b)= AT (a/4, b/2),
and let U, be a mapping on the square [/, 11X [4, 1] defined by
r o A ) _ﬂ_—_f. b e ;.
bz(ﬂ, bl = A+ (I e )-)Tz(l _;‘, ']‘_;-)c
Then the mapping T defined on the closed unit square [0, 1] [0, 1] by:
U,(a. b), a0, 4), be[0, 4),
a=Min (a, b), a€(0, ), be[2, 1],
b=Min(a, b), ac[4, 1], bE[O, 2),
U,(a, b), aci, 1) be[A 1],

T(a, b) =

Is a t-norm.

Proor. The verification of the boundary, monotonicity and symmetry conditions
(0. 1), (0. 2) and (0. 3) is immediate. To prove that T satisfies the associativity con-
dition (0. 4), we have, in view of Theorem V and the properties of Min, only to
show that ([0, 2), U,) and ([4, 1], U,) are semigroups. Now, since 7, is associative,
for any a, b, ¢ in [0, ), we have

1 b\ ¢
U, (U, (a, b, ¢)= :rl(-;: U, (a, b), j)— T,(Tl(j , /) i) -

/

b .

Similarly, for any a, b, ¢ in [4, 1], we have

Uy (Us(a, b), c) = 2+(1 —;.)'rz(_ (@, 5) -

) y a—A b-A\ c—2

R A a—»a b—4A ¢c—2 .
= L4 ( |1 — f.) Tz(-l—u—f.., TJ (]——-i’ _l_— })) = UZ(U, L‘z(b, i )).
Thus U, and U, are associative. Moreover, Ran U, £ [0, 4) and Ran U, =[4, 1].
Thus ([0, 2), U,) and ([4, 1], U,) are semigroups, the hypotheses of Theorem V are
satisfied, whence ([0, 1], 7') is a semigroup and the theorem is proved.

REMARK. It is readily seen that, because of the boundary conditions (0. 1),
we can extend U, to the closed unit square [0, A] [0, 2] without affecting the
conclusion of Theorem 8 in any way.
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The construction in Theorem 8 can evidently be iterated within each of the
squares [0, 2] X [0, 2] and [4, 1] [4, 1]. The graph of a r-norm obtained in this
way may be crudely but effectively described by saying that it differs from the graph
of Min only in having a series of larger or smaller square notches cut out along
the diagonal from (0.0,0) to (1,1, 1).

A particularly interesting class of r-norms is obtained by taking 7,=T,,,
T, =Min, and 4 close to 1. The result is a 7-norm which coincides with the minimal
f-norm Ty over most of the unit squaie, but which, unlike 7, , is continuous on the
boundary of the unit square. Thus Theorems 7.2, 8.1 and 8.2 of [4], as well as
the metrization theorems of [5] and [9], are applicable in any statistical metric
space which is a Menger space (see [4]) under such a r-norm.
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