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On the explicit form of n-group operations

By M. HOSSZU (Miskolc)

An n-group is a non-empty set G in which an operation F(x,, ..., x,)(n=2)
is defined with the following properties:

() x;=F(x,,....x,) maps G onto the whole of G for any one i of the indices
|, ....n and for arbitrary constants x, (k #i) in G (transitivity) ;

(I F[F{'.\‘, 5 Bona vine ks Wb oy Rt ] =
= F[-\] N TP SO | 5 SO G (TTSele. IR I, ST PR, 1]
holds for every i=1,...,n—1 and for each x,€G (associativity ).

The 2-groups are the usual binary groups.

For the previous results on n-groups we refer to [2—15]. E. L. Post [8] has
proved that every n-group G has a binary covering group K in which the n-group
operation has the form

PRy X e X X X v X,€EGZK.
However, here the group operation xy is defined on K and z=xy does not lie
necessarily in G for every x and y in G. Here we give an explicit form of n-group

operations by means of a binary group operation defined on the same set G and by
a certain automorphism of this binary group. The following theorem will be proved:

Theorem. An operation F defined on a set G is an n-group operation if and onlv if
it has the forii
- 2 o= 1
(1 PO asid X)=X1X2x53...x58 ¢

where xy is a binary group operation defined on the same set G and x -~ x* is an auio-
morphism of this binary group the n —1-th power of which is an inner automorphism:

(2) X" =pxe-3,

further ¢€G is a fixed element unchanged by the automorphism x:
(3) ct=c,

It can be verified immediately that any function of the form (1) with an auto-
morphism o satisfying (2), (3) is an n-group operation. Thus in order to prove the
Theorem we must show only that every n-group operation F can be written in the
form (1), where « is an automorphism with properties (2). (3). This will be proved
by proving a sequence of lemmas.
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Lemma 1. If ¢;, .- 6,1 €G are fixed, then xy % F(x,¢;,....,6,-1,)) Is @
binary group operation on G.
This is evident by (I)—(II) if we put i =n—1, x,4;=Xj51=Cj4,,
(=1,...n-2).
Lemma | implies that for fixed x, (k =i)

e Y O & TN SO ) i=l,n

are 1—1 mappings of G onto the whole of G. We show that a similar statement
holds for i=2,....n—1.

Lemma 2. For fixed ¢5.....¢,_,CG
XX 08 FUEY, vy Bychy Xias sy 08
are | —1 mappings of G onto G.
This is clear since
y=(xy)z=F[F(x,¢3, ..., ¥), €3, ... 2] =
= FI X, 054 voes €t s FLBEs voss Comgs P €25 voss C)i Can 15 +ois 2] =93

isa | —1 mapping') for every fixed x, z € G, further y —»" maps G onto G on account
of (I).

Lemma 3. Every n-group operation F defined on G has the form

(4) Fxiy .o Xa) = X1 XT .. X208 X

where xy is a binary group operation defined in Lemma 1, further, x — x* is the inverse
mapping of x ~x" defined in Lemma 2.

The proof is evident by (ll1) if we take

oy T PR e’ B T T

=Flxy, Flea, ...s X3, €3), F(€3, ...y X3, €2, €3), wony F(Cqo gy Xpoyy o02)y X] =
=01 oo FIFD 1y €2y v i )5 Chy Os s Kok Layivi o Xab = Lins (s X2) 0] o} &
into account.
Lemma 4. A4 function F of the form (4) satisfies (I1) only if we have
(5) X% =q,x", (i=2, ..., n—1),
where a; € G is a constant and x --x* is an automorphism.

This can be proved by putting (4) into (I1):

£ o R & $
(6) (x1 -\'2‘---A\_:r— | -\n]-\nz-p L Xegtp B ise Xan =t =2

£; - £ £ = . & _Ei4 2
:..\'1.\'2'....\','_l(.\',‘..\hl-...\;:.j_j....\f+,,l_2.\g+.,_|} .\,’+n|....\2n—l.

') The c;)n‘lposilion gly(x)] of one valued functions ¢ and s I-1 only if y is 1-1. This is
clear since p(x)=yp(y) implies ¢ [p(x))=qlp(»)].
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Let e denote the unit element of the binary group defined on G in Lemma 1. Then
choosing
X3 1= =Xt =€
we get
CiXren-1)" =xt'ai " x]en-1
showing that

x*def g X

is an automorphism.?)

Lemma 5. The automorphisms =, defined above satisfy the functional equations:
%) XU () = x™eji,  k=j+4i—1(modn—1),
where ¢; € G are constants and x* =x*' =X,

This is a consequence of (6) if we take (5) into account and keep x, (kK =i+j—1)
fixed?):

Eisj=|=(n=1) . . o r
) \ciaxiv -1 its. M 1310
Xt gen) =
/ * _Misj- . g y
"'Lixi;f'-i dj.i, if i+j=n.

Since the automorphisms «; leave the unit element e fixed, by putting x,;. ;_, =e
here we obtain d;;=c;!.

Lemma 6. Each of the automorphisms x; satisfying (7) can be expressed by means
of a power e.g. of the automorphism ,:

al-
X =hx" b, (=134, ...,n).
This is true according to the formulae
.Y=§=('2I2,1':"(.‘2_|12,

j 2 2 | » - > 2 —l 3 -'].
= (vap)aa =3 axM (1, 2) = ¥ 2632 XM 3,2 (¢ 2)
obtained by the repeated application of (7).

2) Here we have

~1 _ _8i4) Bis2 £ &1
G TXipaXigd o XpXpp1 o Xpyi-2s

which is a constant depending only on the choice of ¢, ..., ¢, since here x4 4, ..., Xi -2 are
fixed.

3) Here we have

e ‘ i Ej-y af—1 & _Blij-2-(n-1)
€ji=la i’y g Xy 2@ x0T a

i i+f=1={n=1)*
— yli+j—(n=-1) Ei Fj+1 % 2ip =1

d}"l‘_'ri+j ""“i+n-l[{xi{i—j""‘f+n-—1) e

- 232 £j-1 aiy— 1 _&i Livj-3

e i=la i X e )T X e s

X Bt B Ejsl i aiq— 1
di =Xy e X O X 7T
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On account of lemmas 3.4 and 6 we get the form
3 2 3 n=2
F(xy5 10es %) =%, 0,350,536, X3 ... X2 b x_,
(8) FUxs, ooz By =X1 22033 04 . Oa N5

where x*%f pox*2h, ' is an automorphism and aj, ..., @, are constants.

Lemma 7. The F of the form (8) satisfies (II) only if

9) (@3...0.))=a3a,...4,,
(10) X = Xay, X€EG, (k=3,....,.n—-1)
hold.

Namely, in the case i=2 we have by (IlI) and (8):
{—\.l -\'; 03-¥§:-‘-anxu)x:+ laﬁv‘:::+2-~-auv\‘2n—l —

EeS x a? g \& al
=X1(X2X303X4 ... QnXu+1) A3Xp42-.-qnX2n—1+

If we put here x;, =e, it becomes (9). If we put x, =e for every k = 3, then taking
also (9) into account, (II) for i=4 gives

’_

a a2l al
Q3X3 A4...0y=X3 (G3.-.Qy) =X3 Q3...0y,
that is
azy =Jya,

holds for every y=x% €G. Therefore, if we put x, =e for every k =4, then by a
similar reasoning we obtain

304 X% As...ay=a3X% (Qsas...a,)".
Being a; commutable for every element of G, a§ is also, hence
ayxi (asas...a,)" = x3 ax(asas...a,) =

l.\ x -:.\ :i
=X4 (G3Q4:..0y) =X4 Q104.-.:Qu=03X4 04 ;- On,s

agy=yd,

is true for any y=x%'€G.
Thus (10) can be proved for every k <n.
By the Lemma 7 (8) can be written as follows:

(11) Flri Xa, ivp Xa) R AR XS vor a1 C Xy

where ¢ %f a,...q, satisfies
ct=¢
in accordance with (9).
A simple calculation shows that (11) satisfies (I1) (i=1) only if

2) At ppp
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holds. Taking (2) into acount, (11) can be written in the more symmetric form

r -2

(1) PAXT, oovs Xa)= X1 .\"z'.rf;:....r,’,'_': e

cxac le=x1x5x5 .. x0 e.

This completes the proof of the Theorem.

Since every continuous group defined on a real interval is isomorphic to the
real additive group and every continuous automorphism of a real additive group
is a homogeneous linear function [1], in the special case, where /=G is a real inter-

val and F(x,, ..., x,) is continuous, the following corollary is an easy consequence
of our Theorem:

Corollary. The most general form of continuous n-group operations F(x,. ..., x,)
on a real interval I is

(RS

FExis s ) s~ [ al- 'f‘(x,-l]. wel

I
fa

where f(x) is a continuous and strictly monotonic function the inverse function of
which is ="' and « is a constant for which

Sl “ 1 if nis even:
2 =1, L& a= +1 if nis odd

holds. [14—15]
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