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The quasi-series decomposition of two-terminal graphs

By ANDRAS ADAM (Szeged)

To Professor Béla Székefalvi-Nagy on his 50" birthday

§ 1. Introduction

The present paper contains a grapli-theoretical theorem and deals with the
application of this theorem to the problem of the non-repeating realizability of
truth functions.

B. TRACHTENBROT has arrived at partial results in clucidating the following
question: in an irreducible 2-graph, to which pairs of edges k,, k, does a path
exist which contains both k, and k,. There are some situations of edges in which
the non-existence of a path of this character is obvious. In certain other situations,
TRACHTENBROT has proved the existence of such a path; he left the problem open
if the edges arc non-adjacent inner ones. In our Corollary, the problem is solved
completely: it is shown that the obvious situations are the only cases when a path of
the desired character does not exist. These ,,exceptional™ cases are: both of k,, k,
are incident to the same terminal of the graph: &, and k, form a so-called separat-
ing pair, i.e., by deleting them, P and Q lose their connectedness.

In § 3. we study some graph-theoretical concepts in which the notion of separat-
ing pair plays a central role. After the lemmas exposed in §4, we give in §5 the
solution of the graph-theoretical problem for the 2-graphs generally.!) In the
definitions of § 6, it is discussed whether certain graph-theoretical facts are reflected
in the behavior of a truth function or not.”) There are defined three classes of truth
functions irreducible for repetition-free superposition:

functions for which the quasi-series decomposition is not defined.

functions indecomposable in quasi-series manner,

functions decomposable in quasi-series manner.

Theorem 2 states that no function of the first class admits a repetition-free realiza-
tion: Theorem 3 reduces the realizability problem of the third class to the one of
the second class.

') Although the problem has interest chiefly for irreducible graphs, the method used in the
proof makes it necessary to formulate the result more generally. while the intended particular
case itself is exposed as a corollary. Our proof is rather lengthy as compared with the relative sim-
plicity of the result; therefore it would be desirable to find a simpler, immediate proof for the Corol-
lary. 1 did not succeed in doing this.

*) In studying these definitions. it is advantageous if the reader keeps throughout in view the
analogy with the graph-theoretical notions.
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If one joins the terminals P, Q by an additional edge, then Theorem 1 can be
transformed into the solution of the following problem: in a general graph (without
distinction of vertices), what is the necessary and sufficient condition in order that
three edges can be completed into a circuit. The analogous problem for more than
three edges seems to be interesting.

§ 2. Preliminaries

It is supposed that the terminology exposed in §§ |1 —3 of [3] (on graphs) and
in §2 of [2] (on truth functions) is known to the reader. The considered 2-graphs
are always strongly connected.

An edge incident to the beginning vertex P of a 2-graph is called a beginning
edge. Similarly, an edge is a final edge if it is incident to the end vertex. Two edges
are said to form a beginning resp. final pair if both of them are beginning resp. final.
Terminal edge”, .,terminal pair” is a common term for the beginning and final
edges resp. pairs. An edge is called an inner edge if it is incident to no terminal of
the graph.

Two edges are adjacent if there exists a vertex incident to both of them. Two
edges k,, k, of the 2-graph (5 are said to be completable (or, more precisely, 5-complet-
able) if there exists a path in & which contains both of k, and k,.

Two 2-subgraphs of a 2-graph are said to be disjoint if they contain no edge
in common. The difference $, — 9, of two subgraphs ©, and 9, consists of those
edges which are contained in £, and are not contained in O,, and of the terminals
of these edges. The intersection 9, (19, is meant analogously.

Let © be a 2-subgraph of the 2-graph (5. Delete the edges and the inner vertices
of ©, and let the terminals of $ be joined by a new edge 4. We denote the graph,
originating by this construction, by (5/.3) If $,, 9, are disjoint 2-subgraphs of
(5, then (53/(9,, H,) is defined in an analogous manner. — Let @ be a path of £ and
b be a path of /9 such that b contains h. Then we get evidently a path of & if a
is substituted for /4 in b.

In § 6, we shall consider such truth functions which are supposed to depend
effectively and in a monotonically increasing way from each of their variables. For
a function of this type, there exists a uniquely determined, easily presentable sim-
plest disjunctive normal form, and the terms of this form are exactly the prime
implicants of f. The concept of prime implicatum is in a duality relation with the
prime implicant, i. e. the elementary disjunction A is a prime implicatum of f if
= is identically true, but this remains never valid if 2 is replaced by a proper
sub-disjunction of it. — A truth function is irreducible for superposition if it has no
non-trivial separable subset of variables. — If a.truth function f can be represented
in the form g & h where the functions g and s have no variable in common, then the
simplest disjunctive normal form of f can be formed from the corresponding forms
of g, h only by applying the distributive law (without reduction).

The following known facts will be used without an explicit reference.

If ©,,9, are non-disjoint 2-subgraphs of a 2-graph, then either

3) In similar cases we shall denote the substituting edge and the substituted graph by the (La-
tin resp. German) variants of the same letter.

D7
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one of 9,, D, is included in the other, or
D=9, H5.NH;, H>—H, join to each other by parallel composition, or
D=9, 9.N9;,5,— 9 join to each other by series composition. ([4],

Theorem 3, p. 242.)

If we delete one edge of a non-trivial irreducible graph, then we get a strongly
connected graph. ([4], remark after Lemma 4, p. 235.)

If we delete all the edges which are incident to an inner vertex of an irreducible
graph, then we get a strongly connected graph. ([4], Lemma 3, p. 234.)

If one of the following suppositions holds for the edges k; and k, of an irre-
ducible graph, then k,, k, are completable:

exactly one of k, k, is a beginning edge,
exactly one of k,, k, is a final edge,
ky, k, are adjacent inner edges.

([4], Lemma 5 and Theorem 1, pp. 235—236.)

In an indecomposable graph, there exists a pair of disjoint paths. ([4], Theorem 4,
p. 244; [3], Theorem 1, p. 384.)

The notion of repetition-free realization is defined e. g. in [4] (pp. 230-231)
or in [1] (p. 208). It is well known that the prime implicants of the realized function
correspond to the paths of the realizing graph. Let the relation ¢, be true for two
variables x, x, of a realizable (consequently, monotonically increasing) truth
function f exactly when f has a prime implicatum containing both of x,, x,. The
transitive extension &, of g, is true for x,, x, if and only if the edges k,, k, (corres-
ponding to x,, x, respectively) lie in a common series component of that 2-graph
which realizes f. ([1], Theorem 3, p. 211.)

Sometimes in the proofs we do not mention such cases when the statement.
to be proved instantly, is accessible by a simple idea. In particular, we shall speak
on maximal or minimal graphs satisfying certain properties; the proof of the
existence and unicity of such extreme graphs will be left to the reader.

§ 3. Quasi-series decomposition

Let (3, , (%, be irreducible 2-graphs (disjoint from each other) with the terminals
Py and Q,, P, and Q,, respectively. Suppose that exactly the edges k,(4,Q,) and
ki(A10Q,) are incident to Q, in (,, and exactly the edges k,(P,A4,) and k3(P,A43)
are incident to P, in (5,. Let us form a graph (5 in the following way: The vertices
of (8 are the vertices of (5, and of (8,, excepting Q, and P,. The beginning and inner
edges of @, are edges in & too, the inner and final edges of &, are edges in (% too.
Moreover, let (5 have two additional edges: k(A4,A4,) and k'(41A42). (We can say,
presenting this construction illustratively, that we cut up Q,, P,, and we identify
ky with k,, ki with k3.) It is said that (5 originates by the quasi-series composition
of &, and (5,. Evidently, there exist two possibilities for composing (%,, &, in
quasi-series manner; the two graphs resulting are not isomorphic in general. In
consequence of the irreducibility of (3§, and ®,, & is irreducible.

In the remaining part of this §, our aim is to investigate the decomposition
which corresponds to the composition introduced above. Let & be an irreducible
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2-graph. We say that the inner edges k; and k, form a separating pair if each path
of (5 contains (at least) one of k,, k,. (The graph of Fig. 1 has three separating
pairs: (ky, k,), (k3, ks), (ke, kg).)

ke kK ks
P } K >< { a
kK A s

Figure 1

If we delete a separating pair (k,, k;) in (8, then (5 splits into two connected
parts in such a manner that P and Q are in distinct parts. Since we have only two
edges (namely k,, k,) between these parts (5,, 5y, any path goes through only
once from (5, to (5,. Hence, any path of (5 contains exactly one of k,, k,.

Lemma 1. Let (ky, k,) and (k,, ky) be two separating pairs of edges of the irre-
ducible graph (. Then we have k, =k,.

ProoF. Let us consider the connected parts (p, (5, which result by deleting
ki, k,. If ky differs from k,, then we can suppose (by the symmetry) that k; is in
®,. Let now (55, (5g be the connected parts of (5 resulting by deleting k, and k,.
Then k,, k; and the edges being in both of §,, &5 form a 2-subgraph having at
least two edges. This contradicts the irreducibility of (5.

Lemma 2. Let (k, k;) and (ks, k;) be two different separating pairs of edges
in the irreducible graph (5. Let us consider the connected parts Sp, Sy which result
after deleting k,, k,. Then ky and k4 are in the same connected part.

PrOOF. Assume that the lemma is not fulfilled. If we delete only k,, then we
get a strongly connected graph. This graph is series decomposable, k, is itself a series
component in it. One of k,, k, occurs in a component lying before k,, the other
of ky, ks is in a component lying after k,. So there exists a path which contains
both k;, k4; this is a contradiction.

Lemmas 1, 2 make it possible to introduce a natural preceding relation in the
set of the separating pairs of edges of an irreducible graph ®&. Let (k,, k,), (k5, ks)....
voos (kyp—1, k3,) be (all) the separating pairs of (5, enumerated according to this
precedence. We are going to define the quasi-series components of (5. In order to
define the 5™ component 2=s=1), let Oy, , and 55, Gy denote the connected
parts after deleting (k,,_1, k;,-,) and (k,,_, k,,), respectively. Let the s™ quasi-
series component consist of the common edges and vertices of (55@ and (p, of the
edges kys_ 3, kg2, kas—1, ks, and of the additional vertices P,, Q,. The vertices,
transferred from (5, preserve the incidence relations to the edges; P, is incident to
Kys— 3, kay—2: Q,is incident to k,,_,, k,,. — The definition of the first and (¢ + 1)
quasi-series components is analogous, but somewhat simpler in details. Here only
one separating pair and only one additional vertex (Q, resp. P,,,) occurs.
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§ 4. Some lemmas

We prove in the present § a number of lemmas which will play an auxiliary
role in verifying Theorem 1.

Lemma 3. Let A be an inner vertex of the irreducible graph . Then (% has
a chain b(PA) which contains Q.

Proor. Let ¢, ¢, be disjoint paths of (5, B an inner vertex of ¢,. Let d(AB)
be an inner chain of the graph; denote by C the first vertex of d which is contained
in ¢; or ¢,. One of the chains ¢,-¢, '[QC]-d~' [CA] and ¢,-¢, '[QC]-d~[CA]
exists and satisfies the assertion.

Lemma 4. Let the edges k,, k, form a separating pair in the irreducible graph
(5. Let A(# P) be a vertex of the part &G, of 3 (separated by k,, k,). Then (S has
a chain f(PA) such that f contains both of k, and k,, but does not contain Q.

Proor. For a moment, let us consider J, as a two-terminal graph (by iden-
tifying those terminals of k,, kK, which lie in (5y), and let us apply Lemma 3. The
chain b splits into two non-connecting subchains b, , b, if we consider the original
graph (. Since (9 is irreducible, the terminals of k,, k, being in (5, can be joined
in (5, by a chain ¢ which does not contain Q. The chain b,ch, ! fulfils the require-
ments.

Lemma 5. Ler k, k, be two final edges in the irreducible graph . Then (5
contains two paths b, , b, disjoint from each other, such that k, occurs in by, k, occurs
in b,.

ProoOF. Delete all those final edges which differ from k,, k,. The remaining
graph is strongly connected and indecomposable, consequently, it has a pair of
disjoint paths.

Lemma 6. Let the edges k,, k, form either a terminal or a separating pair in
the irreducible graph &, and let A be an inner vertex. Then (5 has a terminal R and
a chain b(RA) such that b contains both of k,, k,.

Proo¥. If k,, k, are separating, then Lemma 4 ensures the statement. — Let
now k,, k, form a final pair. Let us consider the paths b, , b, occuring in Lemma 5,
and denote by B an inner vertex of b,. There exists an inner chain d(AB) in (5.
The further proof coincides with proving Lemma 3. — If k,, k, form a beginning
pair, the proof is symmetrical.

Lemma 7. Let k(AB) be an inner edge of the indecomposable graph (5. Assume
that (5 has no proper 2-subgraph &* such that Q is a terminal of &* and &* contains
k. Then S has a chain b(PA) which contains neither B nor Q.

ProOF. The validity of the lemma for irreducible graphs is an immediate
consequence of the fact that one gets a strongly connected graph from & by deleting
the edges incident to B. The statement can be extended for indecomposable graphs
by an easy induction.

Lemma 8. Let A be an inner vertex, k an edge of the indecomposable or series
decomposable graph 5. Then ( has a terminal R and a chain b(RA) such that b
contains k and it does not contain the other terminal of (5.
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PrOOF. Let ¢ be a path containing k, C an inner vertex of ¢, d(AC) aninner
chain of (5. Denote by B the first vertex of ¢ which lies on ¢. Then both ¢[PB]-
-d~'[BA)], ¢~ '[QB]-d-'[BA] do exist, and one of them contains k.

Lemma 9. Let the edges k, and k,(AB) form a terminal or separating pair
in the irreducible graph (5. Then there exists a terminal R and a chain b(AR) in 5
such that b contains k,, but it does not contain k.

ProoF. If A is a terminal, then each path containing k, fulfils the assertion.
— If Bis a terminal, then b=a(AC)-k, '(CB) is a chain of the desired property
where a is an inner chain of (%. If k,, k, form a separating pair, then denote
by (5, the separated part of (% which contains 4, by C the terminal of k, lying in
(%, by fa path containing k, . There exists a chain d(AC)in (5. The chain b =d[AD]-
-f1DR] satisfies the lemma where D is the first vertex of d lying on / and R is the
terminal of (% which does not lie in (5.

Lemma 10. /f A is an inner vertex, and k is an arbitrary edge of an indecompo-
sable graph (5, then (5 has a chain b(PA) which contains k.*)

PROOF.3) Let the vertices P and A4 be joined by an additional edge k”; let us
denote the extended graph by (5+. It is well known that the relation which holds
for two edges if they can be completed into a circuit is an equivalence. This relation
is true for each pair of edges of (%* (in the contrary case, (%* would have an arti-
culation vertex, hence either (5 would not be strongly connected or (5 would be
series decomposable). If we delete &” from a circuit containing both k, k°, then we
get a chain with the desired property.

§ 5. Main theorem

Let k,, k, be two edges of a (not necessarily irreducible) 2-graph (5. Denote
the minimal 2-subgraph of (5 containing both of k,, k, by (%*: further, in case
if (&* is indecomposable, the maximal proper subgraphs of (%* which contains
k, or k, by (5, or ®,, respectively. (It is allowed that e. g. &, has the single edge
k, only.) If the edges g, and g, form a terminal pair in &*/(®,, ®,), then k,, k,
are called a generally-terminal pair of edges in (5. Similarly, k, and k, are called
a generally-separating pair of edges in & if g,, g, form a separating pair in (*/
[(®,, $,).°) We supplement the definition exposed above (concerning the case
of the indecomposability of &*) by the agrement: if (%* is parallel decomposable,
then k., k, are both generally-terminal and generally-separating: if ®* is series
decomposable, then k,, k, are neither generally-terminal nor generally-separating.

Theorem 1. Let k., k, be two edges of the 2-graph (%. The following statements
are equivalent for k,, k,:

A) There exists a path in & which contains both of k,, k,.

B) k, and k, form neither a generally-terminal nor a generally-separating pair

in &,

4) It is allowed that Q occurs in b.
*) This simple proof is due to Prof. T. GALLAL
®) We remind the reader of the agreement in Footnote 3.
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Next we expose the important particular case of Theorem 1 concerning irre-
ducible graphs.

Corollary. Let ky, k, be two edges of the irreducible 2-graph &. Then the fol-
lowing two statements are equivalent for k, k,:

there exists a path in & which contains both of k, and k,,
ky, k, form neither a terminal pair nor a separating pair in ®.

ProOF of Theorem 1. First we enumerate some facts which are evidently true
for (5 and a 2-subgraph © of (5. Two edges of £ are ®-completable exactly if
they are H-completable. An edge k, of O and an edge k, of & beside ©) are (-
completable exactly if & and k, are (5/9-completable. Two edges of (5 beside »
are ®-completable exactly if they are ®&/D-completable. Two edges of $ form a
generally-terminal or a generally-separating pair in & exactly if they form a generally-
terminal or a generally-separating in pair 9, respectively. Similarly, an edge k, of
and an edge k, beside £ form a generally-terminal (or generally-separating) pair
in & exactly if & and k, form a pair of corresponding nature in &/9; further, two
edges beside $ are generally-terminal (or generally-separating) in & exactly if they
are so in (5/9.

It can be verified easily that the falsity of B) implies the falsity of A). The
implication B) - A) will be proved inductively. Assume that it is valid for all graphs
with 1,2, ...,n—1 edges. Let (5 have n edges, and let k, k, be a pair of edges of
@& which is not &-completable.

Among the following cases, the first three can overlap.

Case 1: (5 has a proper 2-subgraph O containing both of k,, k,. These edges
are not H-completable, thus, by the induction hypothesis, they form a generally-
terminal or generally-separating pair in £. Hence, they do not fulfil B) in (5.

Case 2: & contains a non-trivial 2-subgraph £ which contains exactly one
of k,,k,, e.g. k,;. Then h and k, are not &/H-completable, thus, they do not
satisfy B) in &/, consequently, k, and k, do not fulfil B) in (5.

Case 3: (5 contains a non-trivial 2-subgraph $ which contains neither k, nor
k,. The inference is similar to the preceding cases.

Case 4: (5 is irreducible. We are going to show the impossibility of the follow-
ing situation: the (not (3-completable) inner edges k,, k; do not form a separating
pair in &. The assumption that k,, k, are not separating means that & has a path
b which contains neither k, nor k,. Let &, be that graph which originates from
® by deleting a final edge /(A4 Q) different from the last edge of b. (5, is strongly
connected, reducible in general. Since k,, k, cannot be &, -completable, they form
a generally-terminal or a generally-separating pair in (5, by the induction hypothesis.

Case 4/a: O, is irreducible. k, and k, form a separating pair in &, . Since
they form no separating pair in (5, A4 lies in the first part (5, (separated by them)
of ,. Lemma 4 ensures that (5, has a chain between P and A4 which contains &,
and k, and does not contain Q. So k,, k, are ®-completable, and this is a contra-
diction.

Case 4/b: ®, is reducible. The irreducibility of (5 implies some assertions
concerning the situation of the non-trivial 2-subgraphs of (5, . Every such subgraph
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contains A as its inner vertex. (9, has a uniquely determined maximal proper 2-sub-
graph (5,, moreover, either

®,/®, is irreducible and g, is no final edge in it, or
), /%, consists of two series-connected edges such that g, is incident to P.

Case 4/bjx: (5,/®, is irreducible, and both of k,, k, are beside (5,. Then
k,,k, form a separating pair in ®,/(5, (because they are not (3,/(5,-completable
and they are not terminal edges in &, consequently neither in &,/(5,) and g, lies
in the first separated part of ®,/(,. An inference, similar to Case 4/a, leads to
a contradiction.

Case 4/b/p: (5,/(5, is irreducible, both of k,, k, are contained in (5,. Denote
by © the minimal 2-subgraph of (8, which contains both k, and k,. It is clear that
one of the following five alternatives holds for the structure of $:

(i) © is irreducible,
(i1) £

(1ii) © has two series components such that one of them consists of a single
edge,

has a unique maximal proper 2-subgraph £’, £/’ is irreducible,

(iv) % has three series components such that only the middle one consists of
two or more edges,

(v) £ has two parallel components such that one of them consists of a single
edge. this single edge is one of k,, k,, e. g. k;.

Since k,, k, are supposed not to be $-completable, the cases (iii), (iv) are at
once contradicting. In the other cases, we are going to get a chain between P and
A which contains k,, k, and does not contain Q. The existence of such a chain is
a contradiction, since it would be completed by the edge / into a path of (5.

If (i) holds, k; and k, form a terminal pair or a separating pair in 9. In both
of these cases, the application of Lemmas 6,7 in 9, (%,/9, respectively, gives a
chain with the desired properties. — If (ii) holds and none of k,, k, is in ©’, the
procedure is similar. — If (ii) holds and one of k,, k, — e. g. k, — lies in &, then
we can apply Lemma 8 in £’, Lemma 9in H/%" (for k, and /), and Lemma 7 in
®,/H. — If (v) holds, then we apply Lemma 8 in the non-trivial parallel component
of . Lemma 7 in (5,/% (for & and a suitable terminal of it).

Case 4/b/y: &, /5, is irreducible, exactly one of k, , k, — e. g. k, — is contained
in ¢,. k; and g, form a separating pair in (5,/(®, (they cannot form a terminal
pair since k, is an inner edge of (%). Denote by P,, Q, the terminals of g, such
that P, precedes Q, in any path of &,/(5, which contains g,. Lemma 4 ensures
the existence of such a chain ¢, in ,/(5, whose first vertex is P, and whose last
edge is g, towards P,, which contains k, and does not contain Q. Since k, isnot a
first series component of (5, (because k, k, are not separating in (%), Lemma 10
ensures the existence of a chain ¢, in &, such that its first vertex is Q,, its last
vertex is A4 and it contains k,. The chain, which results if ¢, is substituted for g,
in ¢,, and the edge / form together a path of (% which contains both k,, k,. Contra-
diction.
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Case 4/b/d: (9, is series decomposable. We recall that it consists of two series
components, the first one is (5,, the second one consists of a single edge. In this
case, k,, k, lie necessarily in (5,. Consider the graph (5,, supplemented by the
additional edge /* between A and the end vertex Q, of ®,. k, and &, are not
completable in the resulting graph &* (since they are not (5-completable).
The number of edges of (5* is n—1. Each 2-subgraph of &* (if there exits
any) contains A as its inner vertex and Q, as its terminal. The induction hypothesis
assures that k,, k, form a generally-separating or generally-final pair in (%~.
They cannot be adjacent in consequence of their non completability in (5. There
are two alternatives:

(i) ®* has a proper 2-subgraph £ in which k,, k, form a separating pair,

(i) &* has a 2-subgraph 9 such that e. g. k, is a final edge of 9. k,
lies in a 2-subgraph 9, (C9).

According to the cases (i), (ii), Lemma 4 or Lemma 8 showes that k,, k, arc
(%-completable.

§ 6. Application for the realizability problem

Our next aim is to introduce the notion of those truth functions for which the
quasi-series decomposition is defined. In order to characterize this somewhat compli-
cated notion, we begin the treatment with three partial definitions. The concept
itself will be precised after these partial definitions.

Let f(x,, x,, ..., X,) be a monotonic increasing, effective truth function which
is irreducible for the (repetition-free) superposition. The (ordered) set of variables
{xy, x5, ..., x,} will be denoted by @. We define the binary relation g for two diffe-
rent elements x;, x; of @ by the following rule: ¢(x;. x;) is true if and only if f has
no prime implicant containing both x; and x;. If x;=x;, let ¢ be false. g is clearly
a symmetrical relation.

Partial definition 1. If @ has three different elements x;, x;, x, such that
e(x;, x))=o(x;, x,) =t and g¢(x;, x;) =4, then the quasi-series decomposition is
not defined for f.

Now assume that g is transitive for triples of different elements. This means
that @ includes a subset @ and @ admits a partition n such that each class of @

mod 7 consists of at least two elements and
0(x;, x;) =t if and only if x;=x; (mod n), x; # x;.

It is obvious that any prime implicant of f contains at most one element from each
class of ©" mod .

Partial definition 11. If there exists a prime implicant 2 of f and a class IT of
@ mod 7 such that 2 contains no element of IT, then the quasi-series decomposition
is not defined for f.

Suppose that each prime implicant of f contains exactly one element of any

class. For a variable x;,(€©’), let f,, mean that truth function which is represented
as the disjunction of those prime implicants of f which contain x;. Denote by /T,
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the class of @ mod n containing x;. For any x;( € @’), let the equivalence relation
a,, be defined in the set @ —IT,, as the transitive extension of that relation which
holds for two elements of @ — [T, exactly if they occur in a prime implicatum of
f, in common,

Partial definition IIL. If there exist two elements x;, x; of @’, belonging to a
common class mod =, such that the relations ¢, g, do not coincide, then the quasi-
series decomposition is not defined for f.

Definition. Assume that the suppositions of the partial definitions [—III
are not fulfilled for the function f. We say that the quasi-series decomposition is
defined for f (or. equivalently, that f admits a quasi-series decomposition) if and
only if the elements of f can be partioned into sets

(%) n;m, rtla’ H“’. r(‘n, £ ntn__ lru+l1, nu+!| “_;_.0)
such that the following statements hold:7)
x) the sets MM, 1M . [1¢*1 coincide with the equivalence classes of ©@°
mod m,
£) el a2
ﬁtl]___ﬁ(h:_ :ﬁ"’:z

Ny PPy . e

hold for the cardinalities of the sets enumerated in the sequence ( * ),

) if x, € (s can be 0, 1, ..., 14 1), then the equivalence classes of @ — [T
mod a,, are precisely

AU rOyourdy ., U nes-ny re

and
r"*”'\_," n(und '\,;' .ru+ll|J' n<r+ll.

Definition. If f admits a quasi-series decomposition and 7=0,%) then we
say that f'is indecomposable in quasi-series manner. If fadmits a quasi-series decom-
position and r=1, then f is said to be decomposable in quasi-series manner.

Definition. If fis indecomposable in quasi-series manner, then we say that
[/ has a single quasi-series component, namely itself. If f is decomposable in quasi-
series manner, then we define the s (1 =s=1+ 1) quasi-series component of f as
that function f, which is represented by the disjunction of the conjuctions of the
form Ape-1,uperugper Where A runs through the prime implicants of f.

Proposition. Every quasi-series component of f is irreducible for superposition
and quasi-series indecomposable. Exactly the conjuctions of form Ny-viupmuge

7) The sequence ( * ) is evidently uniquely determined by f up to the conversion of the ordering.
%) L. e. @ splits into two classes mod .
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are the prime implicants of the quasi-series component f, of f. A conjunction N is a
prime implicant of f if and only if N can be represented in the form

(* *) B RDR R BPe+DH

where BY is a prime implicant of f, (1 =s=1t+1) and B, B+ contain a variable
in common®) (1=s=1).

Proor. We are going to prove the second assertion indirectly. Let jos- 0y pooy mes
be a proper partial conjuction of Bye- vy reyumes where A, B are prime implicants
of f. Denote by x;, x; the single variables of g1, Ape, respectively. We have
Bpe-n=x; and Vpw =x;. f,,, f;, can be represented in the form

g'“[ﬂ'“m ry ... yre- ”]&_\-,.&gtzi[r“‘u s ...UH"*'-‘],
fl‘“[n[mi J rql]lJ: el F“']&.\'j&h‘z’[ﬂ”“l,‘- ”[S+ “U U nll-!-l]]'

respectively. Moreover, the function f;,, ., defined as the disjunction of those
prime implicants of f which contain both of x;, x; can be represented in the form

g‘”[ﬂ‘o’l,} it A T Y e i 1:]&_‘.‘_ & f* [f"']&.\‘j&h'h[f‘”"‘-J J 1 (SR ] I nu+11]’

and this representation can be obtained also by seperating the variables in the
prime implicants according to the prescribed sets of variables. (We remark that
f* does not depend on each variable of I' in general.) One can see that

-‘JjnmlurtlJ;J...L;rn—lj&.\'j&':}lruj &-\'J‘ & ‘\“ru«::l,"uvnu_r...l,-nu +1)

is a prime implicant of f; it is a proper partial conjuction of 8. This contradiction
proves that two conjunctions of form ges-nyreyums cannot be in a proper inclu-
sion relation, consequently any conjunction of this form is a prime implicant of f,.

The necessity of the third statement of the proposition is evident, the sufficiency
can be verified by an extension of the above argument.

The irreducibility of £ is also proved indirectly. Assume that f;, admits a non-
trivial superpositional representation; denote the set of variables of the inner
function by 4, the substituted variable by x’. Consider the representation of f as
the disjunction of conjuctions of type (**). Replace the single variable x" for those
variables in each HGe-1, VG BE+1D which occur in A. Thus we obtain a function
which represents f by substituting the inner function of the representation of f;,
considered above, for x’. So 4 is separable also for /.

The quasi-series indecomposability of the functions f| is evident.

Theorem 2. Let f be a monotonic increasing truth function which depends effect-
ively on its variables and is irreducible for superposition. If the quasi-series decompo-
sition is not defined for f, then f admits no repetition-free realization by a two-terminal
graph.

Theorem 3. Let f be a function us in Theorem 2. Suppose that the quasi-series
decomposition is defined for f. [ is realizable by a two-terminal graph without repetition
if and only if all the quasi-series components of f admit such a realization.

?) This common variable belongs necessarily to II'*.
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Proor of Theorems 2, 3. Let f be realized by the (necessarily irreducible) graph
(3. By Theorem 1, all the concepts occurring in the course of the partial definitions
can be interpreted graph-theoretically. (There exist the following correspondences:
The classes I1¥ — the set of beginning edges, the set of final edges, the separating
pairs. The two classes of @ —1I1,, (mod g,,) — the set of the edges preceding resp.
following the set corresponding to IT,. The classes I' — the inner edges of the
quasi-series components of ®.) These correspondences show that f cannot be a
function for which the quasi-series decomposition is not defined, moreover, the
quasi-series components of (5 realize the quasi-series components of /. — Conversely,
let every quasi-series component f, of the truth function f be realizable. If we form
the quasi-series composition of the graphs (5, which realize the functions f, (the
identification of the edges happens according to the common variables of the functi-
ons), then we get a graph realizing f.

Bibliography

[11 A. Apawm, Kétpolusu elektromos hdlézatokrol, 111., 4 MTA Mat. Kutato Intézetének Kozle-
i ményei 3 (1958), 207—218.19)
[2] A. ApAm, Zur Theorie der Wahrheitsfunktionen, Acta Sci. Math. Szeged 21 (1960), 47— 52.
[3] A. ApAm, On graphs in which two vertices are distinguished, Acta Math. Acad. Sci. Hungar.
12 (1961), 377—397.
(41 6. A, Tpaxreudpor, K rteopun GeCnoBropHbIX KOHTAKTHBIX cxem, Tpydst Mam.
Hruem. um. Cmexaosa, 51 (1958), 226 —269.

( Received November I, 1962.)

') Hungarian, with Russian and German summaries. The Russian summary is republished
in Pegiepamusnsiit Ay praa ( Mamemamuia ), vol. in 1961, review no. 2A173.



