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On independent systems of axioms for lattices

By G. SZASZ (Nyiregyhaza)

1. Introduction

Let £ =(L; n, u) be an algebra') with two binary operations denoted by
n and u. Further, let us consider the equations

(1) (xny)nz = xn(yn2),

(2) (xuy)uz = xu(yuz),

(3) XNy = yna,

(4) XY = PR,

(5 xn(xuy) = x,

(6) Xy = X,

(7) XNX = X,

(8) Uy =N,

(9) xn(ynz) = (xny)n(xnz),
(10) xu(yuz) = (xupy)u(xuz),
(1) xn{ynz) = (ynx)n(znx),
(12) xu(yuz) = (yux)u(zux)

and the relation
(13) xny =y if and only if yux = x.
It is well-known that each of the systems
Si=1{(1)—(6)],
Su=1D—@), (7, (13)},
Siu=1(3)—(6). (9), (10)}

) In the sense of [1]. p. VIIL. (It may be found also in [4]. p. 37.)
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is an independent system of axioms for lattices?) and it is not hard to see that
also
Siv =1{(5), (6), (11), (12)}
is a such one?).
The purpose of our discussion is to determine independence examples consist-
ing of the fewest possible number of elements for these axiom systems.

2. The System S,

2.1 For this system, R. Croisot gave (in [2], pp. 27—29) independence exam-
ples with a finite number of elements. But, there is a certain disproportionality which
appears in the Croisot’s examples. Namely, in order to prove the independence
of (1) or (2) in §;, he used algebras consisting of five elements, in contrast with the
other axioms in S;, whose independence was proved by algebras consisting only
of two elements.

We show that this disproportionality follows as a matter of course. Indeed,

we prove below

Theorem 1. Let £=(L, n, ) be an algebra consisting at most of four elements.
If the axioms (3)—(6) hold, then either both or none of (1) and (2) are satisfied in <.

For proving this theorem, we shall use the well-known facts*) that

(14) (5) and (6) imply (7) and (8),
(15) (3)—(6) imply (13).
Furthermore, we need also the following

Lemma. Let dl=(M: n, U) be an algebra satisfving the axioms (3)-(6). If
the equation
pAX =p

for a fixed p in M has no solution other than x =p, then
(i) pnu = u for each element u of M,
(i1) each equation g nx = q (q€ M, q = p) has at least one solution different to q.

Indeed, by (5)
po(pou) = p

for every element u of M. Therefore, if the assumption of the lemma is satisfied,

?) For 8y and 8); see, for example, (4], pp. 40 41, 44 45 and 61 —64 (where references
to the original papers are given too). For Sy see [3].

*) Syp implies Spy obviously. On the other hand, (5) and (6) imply (7) and (8) (see [1). p.
18 footnote 5 or [4]. p. 44, Satz 4) whence, by using (11), @ b=an (brnb)y=(bra)n(bra)=bnra.
This proves (3). Similarly, by using (12) and (8) we get (4). Thus, S}y implies Sy;;. For the inde-
pendence of Syy, see section 5 of this paper.
‘) See the references in footnote 3.
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then®) puu = p. But
i4) (13)
PUU=p=UuUp=p=>pNu=u

which proves (i).
Let, especially, ¢ = p. Then, by (3) and (i),

qgop =pnq = q.

Thus the equation ¢ nx = ¢ has also the solution x=p =gq.

For sake of brevity, we introduce some notations. If an equation v nx = u
(with fixed ) does not hold for x=v,, ..., x=v,, then we write [unx:tv,, ....t,).
Further, (x,y,z)" will mean that (x ny)nz#xn(ynz); the symbol (x, . 2)"
will be used in similar sense.

Finally, we remark that the results implied by (3) or (4) are not always enumera-
ted explicitely.

After these preliminairies we begin the proof of Theorem 1.

2.2 For algebras consisting of two elements the statement of the theorem
may be easily proved as follows.

Let £” =(L; n) and £% =(L; u) denote the algebras (with one operation)
obtained from £ =(L: n, U) by considering only the operation N or U, respectively.
If £=(L; n, ) satisfies the axioms (3)—(6), then, by (14), £~ and £" both are
commutative and idempotent. Now, one can verify by direct computation that
there are only two two-element algebras with a commutative and idempotent opera-
tion, namely the semilattices

ab' | a b
al aa apnd alab
blab b|bb

Consequently, in case of two-element algebras € =(L; n, v), (3)—(6) implyv both
of (1) and (2).

2.3 Now, we consider the set Ly={a, b, ¢} and we try to define an algebra
€3=(Ly: n, v) satisfying (3)—(6). Then, by (14), we have to take

(16) ana=a, bnb=>4 c¢nc=c,
(17) avag =g, - bud=b, cuc=c.
Furthermore in accordance to the statement (ii) of our Lemma we may assume:

(18) The equations anx = a and bny = b both have at least two different
solutions,

and we may use (13) by (15).

5) If A,B.C are arbitrary propositions, then the symbol A =B resp. A S B will mean ..A imp-
lies B resp. ,,A implies B by C".
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In what follows we distinguish three cases.
2.3.1 Case anb=a. Then:

3 (13
anb=a = bna=a :’aub=b
Jas
(3).(13)
(19) bne=b=—=buc=c.
Now, if we take @ n¢ = ¢, then we get, by (13) and (4), auc = a and, consequently,
(a. b, ¢)” and (a, b, ¢)" ; thus neither (1) nor (2) are satisfied. But if we take, on the
contrary, anc #c, then
(3) (19)(3)
anc#c=cna#c—=lenx; b, al=

Lemma (i) (13)
= Na=a=avJc=c

and thus we get the lattice in which a <b <c, that is (1) and (2) both are satisfied.
2.3.2 Case anb=>b. This case may be treated similarly to 2. 3. 1

2.3.3 Case anb=c. Then

(6) 4) (13)
anb=c=avuc=a=cvua=a=anc=c.

Thus the equation a nx = a would have only the solution x =a, in contradiction
to our assumption (18).
By 2.3.1—2.3.3, the statement of Theorem 1 for £ is proved.

2. 4 Finally, we consider the set L,= {a, b, ¢, d} and we try to define an algebra
€, =(Ly: N, L) satisfying (3)—(6). Then (16) and (17) hold again, completed also
by

dnd =d and dnd=d.

Furthermore, similarly as before, we may assume (13) and:

(20) The equations anx =a,bnx= b and c¢nx = ¢ have at least two different
solutions.

We distinguish four cases according to the value of anb.

2.4.1 Case anb=d. Then we have

(3)(6) (4)(13)
20 anb=d—— uvd=uv@nb)=u —=und=d=
_(20) (3 :
=unx; b,dl=unc=u=[cnx; u (for u=a, b).
oy
uvec=c

The last statement implies, by our assumption (20), ¢nd = c¢. Consequently,
cud = d and thus (b, ¢, d)", (b, c,d)".

2.4.2 Case anb=c. If we take, in (21), ¢ in place of 4 and conversely, then
we get relations valid in the present case. [dnx;a, b] implies (only) that either
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d dne =dordnec = ¢. But, as in 2.4. 1, the relation dnc = d
o would imply (b,d,¢)” and (b, d. ¢)".
Therefore we suppose d n¢ = ¢, whence by (13) cud =d. As for

ok °>  aub,our assumption @ nb = ¢ implies (by (13)and (4)) aub =a

2 and aub #b; further, aub = ¢ would imply a nec=an (av b)=a,

> in contradiction to the result a n¢ = c obtained above. Thusaub =d,

‘ so that we get the lattice given by the diagramm 1. This means:
Diagramm 1 If 4~b = ¢ and ¢nd = ¢, then both of (1) and (2) hold.

2.4.3 Case anb=»h. During the discussion of this case we shall often use
the following obvious consequences of (5) resp. (6):

(22) xnz # x implies xvy # z,
(23) xvuz # x implies xny # z.
Thus we have

; 22)
kanb:b':’au.wb (for all yeL,)
Uua:

( (23)
lbua=a= bnc#a.

(24)

We distinguish three sub-cases according to the value of auc. (The sub-case
avuc = b is impossible by (24).)

2.4.3.1 Sub-case av c=a. Now

(4)(13)

auc=a=—=anc=c
U 0
[anx: b, c]{;]aﬁd=am“i: avd=d
J a2
(25) duc#a.

43173
Thus, if we take dub =d (' — dnb = b), then it is easy to verify (d, a. b)”

and (d, a, b)”, so that we suppose dub =d. Hence we obtain

(26) dub=qd2 2 bncxd
Jeamn
@7 dnb=b'=duc#b.

It follows by (25) and (27) that duc¢ must be equal either to ¢ or to d.

In case of duc = r'(nz':’cr\d = d) we have (a,c,d)” and (a,c, d)".
4
In case of duc = n’(l “l:"'i dnc = ¢) we take into account (24) and (26)

which imply: the value of b ¢ is either b or ¢ (and, consequently, the value of
buc is ¢ or b, respectively). Thus we get the lattices b=c=a<=d and c<b<a<d,
respectively.
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3
2.4. 3.2 Sub-case av (-=r((1—-r)rna=a}. Now, if we take bne=d, we get

B e B b '
U eub=a

(4)(13) ‘
bud=h =bnd= dz» buc#d) INE)

(‘ﬁﬂ':[',

> . - (13)
in contradiction to our assumption. Further, if we take bne = ¢ (= cub = b),

then (a. b. ¢)” and (a. b, ¢)”. Thus, by (24), we may suppose bnc = b. Then

(3)(13)
bne=b—=buec=c

U
7]
fefix: s b]‘g}cr\d=cm“='?cud=d
J 3@
(28) aeasenvessisi- g e (Jorall yEL)
HECD!
(29) R S ey 4T/ .

Since avd = a implies (a, d, ¢)” and (by aud = at—"-l:-‘ia nd = d) also (a. d, ¢)”,

by (24) and (29) we have only to treat the case of aud = d.

But, under the assumption aud = d('= dna = a), by taking bnd # b,
we have
bind#b=(b,d, c)”
INEITRI)!
bud#d=(c, b, d)”

and, by taking bnd = b ((mgbud d) we get the lattice h<a<c¢ =d.

2.4.3.3 Sub-case aec=d. Now we have
3)(22
(30) auc—d:amd aL~£dub#a
(3 J3»as
[ 13 agud=d
U J @y
anc#a,c anc#d
U
anmnc=h

(30 | 3) oz (20 S
®a3n =[enx;a bl=cnd=c

cub=c—=cnb=>) | ®ay
IJ (4)(23) (‘Ud=d
(31) bnd#e.

If we take bnd = b, then we get

bnd#bZhAd=a or bad=d]=(c, b, d)"

U;l.’.)m
bud=d 2E bud=b or bud=c]=(c, b, d)".
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d (3)(13)
If we take, on the contrary, bnd = b( = bud = d), then we

obtain the lattice given by the diagramm 2.

ac oe By 2.4.1-2.4. 3, the statement of Theorem 1 is proved
e o for €,.
o
b
Diagramm 2 3. The System S,

For this system I gave in [4] independence examples with two resp. three ele-
ments®). Especially, the independence of the axioms (1)—(4) was proved by algebras
with three elements and that of (7), (9) by algebras with two elements. Now | prove
that these examples are the best possible in the following sense:

Theorem2. Let £=(L; n, v) be an algebra with two elements. If the axioms
(3), (4), (7) and (13) hold, then either both or none of (1) and (2) are satisfied in <.

Theorem 3. Let Il =(M; n, v) be an algebra with two elements. If the axioms
(1), (2), (7) and (13) hold, then either both or none of (3) and (4) are satisfied in S| .

PrOOF. Since (7) and (13) imply (8), the discussion in section 2.2 may be
verbatim applied for Sy; too. Thus Theorem 2 is already proved.

As for Theorem 3, let us consider the set M = {a, b} and try to define an algebra
M =(M; n, v) satisfying the axioms (1), (2), (7) and (13). Then

(13)
anb=a=bua#a=bua=Ah,

(13)
anb=b=bua=a,

(13)
bna=a=avub=b,

(13)
bna=b=aub#b=aub=a.

Consequently

anb = bna = aub = bua,
and, similarly,

avb = bua = anb = bna.

Thus (3) and (4) are equivalent in SN

¢) The independence example given in [4] for (3) (with the notation of [4], for L) is errone-
ous. A correct example is the following:

Nnlabec ulabe
" vy
alaaa ajlacce

b‘ibbb blebe
clabece ol -0
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4. The System S,

FeLSCHER proved in [3]: If we assume that in the algebra £ =(L:; n, U) the
axioms (3)—(6) hold, then (1) and (9). resp. (2) and (10) are equivalent. Thus the
statement of Theorem 1 remains true if we replace (1) by (9) and (2) by (10).
Consequently, in order to prove the independence of (9) or (10) in S, we need
use algebras with five elements.

5. The System Sy

For this system we may give very simple independence examples. In fact, we
show that the algebras

Nnlab ulab
(32) .- a | bb alaa

b . bb b‘ab
and

. LR
(33) NMNi:alaa a | aa

bbb blab

prove the independence of (5) resp. of (11) in Syy; in order to prove the independence
of (6) or (12) in Sy, we need only ot change the signs N and v
in (32) and (33), respectively.

For the algebra £ :

Firstly, (5) does not hold and (11) does obviously. Next, (6) holds, because
xu(xny) = xub = x for each x€£. Finally, £ being a (well-known) semilattice,
(12) is also satisfied.”)

For the algebra N\ :

The equations xNy = x resp. xV(xNy) = xux = x being true for each
x €3I, the axioms (5) and (6) are satisfied in L. (12) is also satisfied (by the same
argument as for £). Finally, (11) does not hold: a n(b nb) = aand (b na) n(b na) =b.

We call the attention of the reader that, in consideration of the independence
examples, the axiom system S;y is as simple as possible.
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7) Indeed, x (ruz)=(xuyulxuz) may be obtained by the argument used in [3], p. 172;
hence, by use of the commutativity, we get (12).



