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A note on endomorphism groups

By 1. W. ARMSTRONG (Urbana, Illinois)

Suppose G is an abelian p-group with endomorphism group End G and endo-
morphism ring &(G). It is well known that G is determined by &(G) [1]. It is also
known that most abelian p-groups are determined by their multiplicative groups
of automorphisms [3]. Each of these theorems depends on the multiplicative struc-
ture of £(G) in an essential way. It is then unlikely that G should be determined by
End G, and this is indeed the case. One may, however, ask for a characterization
of those abelian p-groups which are determined by their endomorphism groups
(Cf., Problem 41 of [1]). While this problem appears difficult for the class of all
abelian p-groups, it is not difficult for the class of p-groups which are direct sums
of cyclic groups and it is the purpose of this note characterize those groups in this
restricted class which are determined by their endomorphism group. (It should
be noted that we shall assume the generalized continuum hypothesis for this result.)

Lemma 1. Let
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EndG = [[ 2 Clp*)

where

0. if n=0,
(1) n, +2m8;0 4, if n;#0 and s; is finite,

(2‘* if m#=0 and s; is infinite.
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where u; is given by (1).

c)+ T 3 C(p))= 1

Lemma 2. Let G and H be abelian p-groups,

G= S3Cp) O=n
i=1 nm
and
H= 22 C(p),

0=m,.
i=1 m
Let s;= > n and t;= > my. Then End G =End H if and only if
k=i k=i
(i) for any i, n;=0 if and only if m; =0,
and
(ii) 2% =2" for every i.
Proor. By Lemma 1,

EndG —~ [] 3 C(p)
and ‘

EndH = ] 3 C(p),
i=1 o
where wu; given by (1) and

sO, if m,=0,
v, = omi +2mt;y, if m#0 and 1, is finite,
\2”!

if m;=0 and ¢; 1s infinite.

It follows readily that (i) and (ii) imply End G = End H. The converse follows
from the fact that a basic subgroup of the torsion subgroup of

_ [}1 > C(p),

O=w,
is isomorphic with

Z[/_a

> C(p).
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For the following proposition we assume the generalized continuum hypothesis.
In particular, we assume that for any cardinal numbers % and £, 2*=2F implies

a=p.

Proposition 1. Let G be a p-group which is a direct sum of cyelic groups,

Gz J 5 C(p), 0=n,.
i=1 m

Then End G determines G if and only if G is a bounded group and the following con-
dition holds for G: If for some index i, n; is infinite, then n;=>n; whenever j<i and
n; #0.

PrROOF. Let 5;= > m. If G is unbounded there is an index j with n,=s;

=i

(otherwise the n;'s would form an infinite strictly decreasing sequence of cardinal
numbers). Set m;=n; for each i+#j and let m; be any cardinal number different
from n; and not exceeding s;. Put

H = 2 > C(p).

Then End H=End G but H#G. Hence if G is determined by End G, G must be
bounded. Let k be an index such that #, is infinite. Suppose there were 7n;, j <k,
such that 0#n;=n,. Define H,

H = :g g’ C(ph)

by cardinal numbers m; such that m;=n; if ij and m; is any cardinal number
different from n; and not exceeding n,. Then s;=1; whenever i=j. If i<}, then
Sipr=m=n; and ny=m; imply n;+s;.y = m;+s;,y = m;+1;,, and so s5;=
=m+...+n_+(m;+5;49) =m+...4+my_y+(m;+t;,y) = t;. That is, 5;,=¢,
for every i and End G =End H# by Lemma 2. But clearly G # H. This proves the
necessity.
To prove sufficiency, let
r
G= 2 23 C() 0=n,.

i=1 my

If each n; is finite then G is finite and therefore is determined by End G. So suppose
some n; is infinite. Let H

H= F >C(p), 0=m;,

i=1 m;

be such that End G = End H. Let k be the largest index for which n, is infinite. Then
s;=t,; for all i=k and hence n;=m, for all i=k. Let j=k. End G = End H implies
2% =2% which implies (assuming the generalized continuum hypothesis) that s; =1;.
Since the condition holds for G, if n;#0 then n;=s5;=1;,=m;. Thus n;=m; for
every i and G= H. Hence End G determines G.

Clearly any p-group G which is not determined by its endomorphism group
has the property that there exists another p-group H with End H = End G but
&(H)#6(G) (Cf. Problem 42 of [1]). Proposition 1 then provides simple examples
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of such p-groups. For example, any unbounded direct sum of cyclic p-groups is
one of these. (See [2] for a more complicated example.)

Problem 44 of [1] asks for a characterization of groups which are endomorphism
groups. We specialize this problem and conclude with the following

Proposition 2. A p-group T is the group of endomorphisms of some group G
if and only if T has the form

T~ 33c(p,

iI=1 m;
r
and there exist cardinal numbers my, ..., m, such that if s;= > m,, then n;=2%
k=i
if s, infinite and n;=mi +2m;s,;., if s; is finite.

Proor, If T has the indicated form and such cardinal numbers exist, then T
is isomorphic to the endomorphism group of

G = ‘_21' Z C(p).
If 7T End G for some G, then G is a p-group bounded by the order of the identity
endomorphism. Write G as above for some cardinal numbers m,, ..., m,.. Then
T has the form indicated in the proposition.

REMARK. Since this note was prepared, R.S. Pierce has kindly provided
this author with a pre-print of his forth-coming paper The Homomorphism Groups
of Primary Abelian Groups which contains results analagous to Lemmas | and 2
for arbitrary reduced abelian p-groups.
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