On functions of three vectors*

By F. KOZIN (Lafayette, Ind.)

Let X, Y, Z be three vector spaces (not necessarily of the same dimension). We say that a real-valued function f is defined on $X \times Y \times Z$ if, with each ordered triple of vectors x, y, z belonging to X, Y, and Z, respectively, a real number f(x, y, z) is associated.

Theorem. If a real-valued function on $X \times Y \times Z$ is superadditive in x and y for every z, and subbadditive in x and z for every y, then f is additive in x and y for every z, as well as in x and z for every y. In other words, the inequalities

(I)
$$f(x+x_1, y+y_1, z) \ge f(x, y, z) + f(x_1, y_1, z)$$

(I')
$$f(x+x_1, y, z+z_1) \le f(x, y, z) + f(x_1, y, z_1)$$

for all vectors \mathbf{x} , \mathbf{x}_1 , \mathbf{y} , \mathbf{y}_1 , \mathbf{z} , \mathbf{z}_1 jointly imply the two opposite inequalities.

It goes without saying that f is not necessarily additive in the three vectors \mathbf{x} , \mathbf{y} , \mathbf{z} .

We begin by proving some auxiliary formulae in which \mathbf{o} denotes the vector all components of which are 0. From (I) it follows that $f(\mathbf{o}, \mathbf{o}, \mathbf{z}) \ge 2f(\mathbf{o}, \mathbf{o}, \mathbf{z})$ for any \mathbf{z} . Hence

(1)
$$f(\mathbf{0}, \mathbf{0}, \mathbf{z}) \leq 0$$
 for any \mathbf{z} .

Similarly, (I') implies

(1')
$$f(\mathbf{0}, \mathbf{y}, \mathbf{0}) \ge 0$$
 for any \mathbf{y} .

Hence, in particular,

$$f(\mathbf{0},\mathbf{o},\mathbf{o})=0.$$

Clearly, by virtue of (I) and (I'),

$$(2^*) f(\mathbf{x} + \mathbf{x}_1, \mathbf{0}, \mathbf{0}) = f(\mathbf{x}, \mathbf{0}, \mathbf{0}) + f(\mathbf{x}_1, \mathbf{0}, \mathbf{0}),$$

whence

$$(3^*) f(-\mathbf{x}, \mathbf{o}, \mathbf{o}) = -f(\mathbf{x}, \mathbf{o}, \mathbf{o}) \text{ for any } \mathbf{x}.$$

(1*) and (I') imply that
$$0 = f(\mathbf{0}, \mathbf{0}, \mathbf{0}) \ge f(\mathbf{x}, \mathbf{y}, \mathbf{0}) + f(-\mathbf{x}, -\mathbf{y}, \mathbf{0})$$
. Thus

(4)
$$f(\mathbf{x}, \mathbf{y}, \mathbf{o}) + f(-\mathbf{x}, -\mathbf{y}, \mathbf{o}) \leq 0$$
 for any \mathbf{x} and \mathbf{y} ,

^{*} This paper is an elaboration of the author's Mater's Thesis, Illinois Institute of Technology (January 1953). An abstract was published in *Bull. Amer. Math. Soc.* **58** (1952), p. 627.

and similarly,

(4')
$$f(\mathbf{x}, \mathbf{o}, \mathbf{z}) + f(-\mathbf{x}, \mathbf{o}, -\mathbf{z}) \ge 0$$
 for any \mathbf{x} and \mathbf{z} .

From (4) and (4'), for x = 0, in view of (1) and (1'), we obtain

(5*)
$$f(\mathbf{o}, \mathbf{y}, \mathbf{o}) = 0 = f(\mathbf{o}, \mathbf{o}, \mathbf{z})$$
 for any \mathbf{y} and \mathbf{z} .

By (I), (5*), and (I') we find

 $f(\mathbf{o}, -\mathbf{y}, \mathbf{z}) + f(\mathbf{o}, \mathbf{y}, \mathbf{z}) \le f(\mathbf{o}, \mathbf{o}, \mathbf{z}) = 0 = f(\mathbf{o}, -\mathbf{y}, \mathbf{o}) \le f(\mathbf{o}, -\mathbf{y}, \mathbf{z}) + f(\mathbf{o}, -\mathbf{y}, -\mathbf{z})$ and, consequently,

$$f(\mathbf{0}, \mathbf{y}, \mathbf{z}) \leq f(\mathbf{0}, -\mathbf{y}, -\mathbf{z})$$
 for any \mathbf{y} and \mathbf{z} .

Here, y, z and -y, -z may change roles, whence

(6*)
$$f(\mathbf{0}, \mathbf{y}, \mathbf{z}) = f(\mathbf{0}, -\mathbf{y}, -\mathbf{z}) \text{ for any } \mathbf{y} \text{ and } \mathbf{z}.$$

By (5^*) , (I'), (6^*) , and (I) we have

$$0 = f(\mathbf{0}, \mathbf{y}, \mathbf{0}) \le f(\mathbf{0}, \mathbf{y}, \mathbf{z}) + f(\mathbf{0}, \mathbf{y}, -\mathbf{z}) = f(\mathbf{0}, \mathbf{y}, \mathbf{z}) + f(\mathbf{0}, -\mathbf{y}, \mathbf{z}) \le f(\mathbf{0}, \mathbf{0}, \mathbf{z}) = 0.$$

Therefore,

(7*)
$$f(\mathbf{0}, \mathbf{y}, -\mathbf{z}) = -f(\mathbf{0}, \mathbf{y}, \mathbf{z}) = f(\mathbf{0}, -\mathbf{y}, \mathbf{z}) \text{ for any } \mathbf{y} \text{ and } \mathbf{z}.$$

By (I), (4), (5*), and (3*) we find

$$f(\mathbf{x}, \mathbf{y}, \mathbf{o}) \le -f(-\mathbf{x}, -\mathbf{y}, \mathbf{o}) \le -f(-\mathbf{x}, \mathbf{o}, \mathbf{o}) - f(\mathbf{o}, -\mathbf{y}, \mathbf{o}) = -f(-\mathbf{x}, \mathbf{o}, \mathbf{o}) =$$

$$= f(\mathbf{x}, \mathbf{o}, \mathbf{o}) = f(\mathbf{x}, \mathbf{o}, \mathbf{o}) + f(\mathbf{o}, \mathbf{y}, \mathbf{o}) \le f(\mathbf{x}, \mathbf{y}, \mathbf{o}).$$

Consequently,

(8)
$$f(\mathbf{x}, \mathbf{o}, \mathbf{o}) = f(\mathbf{x}, \mathbf{y}, \mathbf{o})$$
 for any \mathbf{x} and \mathbf{y} .

Similarly,

(8')
$$f(\mathbf{x}, \mathbf{o}, \mathbf{o}) = f(\mathbf{x}, \mathbf{o}, \mathbf{z})$$
 for any \mathbf{x} and \mathbf{z} .

By (8'), (I), and (I'), we find

$$f(\mathbf{x}, \mathbf{o}, \mathbf{o}) + f(\mathbf{o}, \mathbf{y}, \mathbf{z}) = f(\mathbf{x}, \mathbf{o}, \mathbf{z}) + f(\mathbf{o}, \mathbf{y}, \mathbf{z}) \le f(\mathbf{x}, \mathbf{y}, \mathbf{z}) \le f(\mathbf{x}, \mathbf{y}, \mathbf{o}) + f(\mathbf{o}, \mathbf{y}, \mathbf{z}) = f(\mathbf{x}, \mathbf{o}, \mathbf{o}) + f(\mathbf{o}, \mathbf{y}, \mathbf{z}).$$

Therefore

$$(9^*) f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = f(\mathbf{x}, \mathbf{o}, \mathbf{o}) + f(\mathbf{o}, \mathbf{y}, \mathbf{z}) \text{ for any } \mathbf{x}, \mathbf{y}, \mathbf{z}.$$

From (7*) and (I) it follows that

$$f(\mathbf{x}, \mathbf{y} + \mathbf{y}_1, \mathbf{z}) - f(\mathbf{0}, \mathbf{y}_1, \mathbf{z}) = f(\mathbf{x}, \mathbf{y} + \mathbf{y}_1, \mathbf{z}) + f(\mathbf{0}, -\mathbf{y}_1, \mathbf{z}) \le f(\mathbf{x}, \mathbf{y}, \mathbf{z}).$$

Hence by (9*)

$$f(x, y + y_1, z) \le f(x, y, z) + f(0, y_1, z) = f(x, y, z) + f(x, y_1, z) - f(x, 0, 0).$$

Thus,

(10)
$$f(\mathbf{x}, \mathbf{y} + \mathbf{y}_1, \mathbf{z}) \le f(\mathbf{x}, \mathbf{y}, \mathbf{z}) + f(\mathbf{x}, \mathbf{y}_1, \mathbf{z}) - f(\mathbf{x}, \mathbf{0}, \mathbf{0})$$

and, similarly,

(10')
$$f(\mathbf{x}, \mathbf{y}, \mathbf{z} + \mathbf{z}_1) \ge f(\mathbf{x}, \mathbf{y}, \mathbf{z}) + f(\mathbf{x}, \mathbf{y}, \mathbf{z}_1) - f(\mathbf{x}, \mathbf{o}, \mathbf{o}).$$

From (10), (I'), (8), and (2*) it follows that

$$\begin{split} f(\mathbf{x} + \mathbf{x}_1, \, \mathbf{y} + \mathbf{y}_1, \, \mathbf{z}) & \leq f(\mathbf{x} + \mathbf{x}_1, \, \mathbf{y}, \, \mathbf{z}) + f(\mathbf{x} + \mathbf{x}_1, \, \mathbf{y}_1, \, \mathbf{z}) - f(\mathbf{x} + \mathbf{x}_1, \, \mathbf{0}, \, \mathbf{0}) \leq \\ & \leq f(\mathbf{x}, \, \mathbf{y}, \, \mathbf{z}) + f(\mathbf{x}_1, \, \mathbf{y}, \, \mathbf{0}) + f(\mathbf{x}_1, \, \mathbf{y}_1, \, \mathbf{z}) + f(\mathbf{x}, \, \mathbf{y}_1, \, \mathbf{0}) - f(\mathbf{x} + \mathbf{x}_1, \, \mathbf{0}, \, \mathbf{0}) = \\ & = f(\mathbf{x}, \, \mathbf{y}, \, \mathbf{z}) + f(\mathbf{x}_1, \, \mathbf{0}, \, \mathbf{0}) + f(\mathbf{x}_1, \, \mathbf{y}_1, \, \mathbf{z}) + f(\mathbf{x}, \, \mathbf{0}, \, \mathbf{0}) - f(\mathbf{x} + \mathbf{x}_1, \, \mathbf{0}, \, \mathbf{0}) = \\ & = f(\mathbf{x}, \, \mathbf{y}, \, \mathbf{z}) + f(\mathbf{x}_1, \, \mathbf{y}_1, \, \mathbf{z}). \end{split}$$

Therefore

(11)
$$f(\mathbf{x} + \mathbf{x}_1, \mathbf{y} + \mathbf{y}_1, \mathbf{z}) \leq f(\mathbf{x}, \mathbf{y}, \mathbf{z}) + f(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z})$$

and, similarly,

(11')
$$f(\mathbf{x} + \mathbf{x}_1, \mathbf{y}, \mathbf{z} + \mathbf{z}_1) \ge f(\mathbf{x}, \mathbf{y}, \mathbf{z}) + f(\mathbf{x}_1, \mathbf{y}, \mathbf{z}_1).$$

This completes the proof of our theorem.

In conclusion, we mention a corollary of (8) and (8'). If the vector space \mathbb{Z} has the dimension 0, then f is independent of \mathbb{Y} . If the dimension of \mathbb{Y} is 0, then f is independent of \mathbb{Z} .

(Received December 5, 1962.)