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A self-dual theory of real determinants

By FRANK KOZIN and KARL MENGER

One of the salient features of the theory of determinants is the metamathemati-
cal fact that every theorem about rows is also valid for columns, and vice versa.
The traditional foundations of the theory, however, lean towards one side. WEIER-
STRASS'), CARATHEODORY?), and SCHREIER?) introduced determinants as matrix
functions postulated to be linear (i.e., additive and homogeneous) in the rows
and to assume the value O for every matrix with two equal rows. They then proved,
among other theorems, the corresponding facts for columns. ARTIN®) more recently
based a variant of that theory on postulates concerning columns, and GASPAR®)
developed determinants from new, natural postulates concerning either rows or
columns.

In the present paper we show that, for real matrix functions, sublinearity in
the columns and superlinearity in the rows, combined with nonpositivity for matrixes
with equal columns and nonnegativity for matrices with equal rows constitute a
self-dual foundation of the theory. ®) The following proof of this result of one of us’)
makes essential use of a theorem on functions of three vectors by the other one®).

If 4 is a square matrix of n? elements Ay, we denote®) the i-th row of 4 by A;,
and the k-th column by A,. Thus A4; and A* are the sequences

il a8 Ay iyl

') K. WEIERSTRASS, Werke, vol. 3, p. 271. It is interesting that in Muir’s voluminous com-
pendium on determinants WEIERSTRASS’ fundamental paper is not even mentioned.

?) C. CarAaTHEODORY, Reelle Functionen, 1st. ed., Leipzig, 1918, p. 318.

*) O. ScHrEIER—E. SPerNER, Einfithrung in die Analytische Geometrie und Algebra I, Leip-
zig, 1931, p. 69.

‘) E. ArTIN—N. MiLGraMm, Galois Theory, 2 nd. ed., Notre Dame, Indiana 1944, p. 11,

*) G. GAsPAR. Eine neue Definition der Determinanten, Publ. Math. Debrecen 3 (1953 —54)
257 - 260. Cf. also the interesting related paper by M. Stosakovig¢, Une théorie générale des de-
terminants, Bull. Soc. Math. Phys. Serbie 6 (1954) 41 —55.

“) Other self-dual theories can be found in A. CrLimescu. Une définition axiomatiquedes
des déterminants, Bul. Inst. Politehn Tasi 2 (6) (1956) nr. 3—4, 1—7, and A. BERGMANN, Ein
Axiomensystem fiir Determinanten, Arch. Math. 10 (1959) 243 — 256.

") K. MENGER, Une théorie aximatique générale des déterminants C. R. Acad. Sci. Paris,
234 (1952), pp. 1941 —1943.

*) F. KoziN, On Functions of Three Vectors, preceding paper.

“) We here adopt MEeNGER's typographical convention according to which references to num-
bers (such as i, j, n, ... ) are printed in roman type while functions are designated in iralic type.

A matrix A is a function, A¥ is its value for i and k. A row 4; is a I-place function assuming for
k the value AI" It may also be considered as a vector. In the proof of Theorem 11.. vectors will also
be denoted by letters x,y.z in bold type.
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respectively. Both rows and columns are referred to as arrays of the matrix. Arrays
will be treated like vectors. For instance,

A* = B*+ C* means Af = Bi"+Ci" for 1=i=n,
In this notation, the afore-mentioned result reads:

Theorem 1. A real-valued function f of the square matrices with n* real elements
is the determinant if and only if [ has the following properties:

(I*=) (1 =Kk =n). [ is subadditive in the k-th column, that is to say, for any three
matrices A, B, C,

if Ax = B*+C* and A% = B¥ = C¥ for each k’#k, then f(A)=f(B)+/f(C).
(I, =) (1=1=n). [ is superadditive in the i-th row, that is,
A; = B+ C; and A, =B, =C; for i’ #i implies f(A)=f(B)+/(C).

(II*=) (1 =k=n). [ is positively subhomogeneous in the k-th column, that is,
if ¢ =0, then for any two matrices A and B,

A¥=cB* and A% =BX for k=k" imply f(A4) =cf(B).

(IL,=) (1 =1=n). [ is positively superhomogeneous in the i-th row.

(™) (1=h, i=n, h#j). f is nonpositive if the h-th and j-th column are equal,
that is, A"= A implies f(A4)=0;

(IIly;). f is nonnegative if the h-th and i-th row are equal.

(IV). f(D)=1 if D is the unit matrix, for which D{ =1 or 0 according as i =k
or #k.

We begin by drawing conclusions from Postulates (I*=) and (I, =) alone.

Theorem 1. If a real-valued function f of square matrices is subadditive in the
columns and superadditive in the rows, then f is additive in all arrays.

For any square matrix A of n? numbers and any j (I =j=n), let A[j] be the
matrix obtained by deleting from A the j-th row and the j-th column. Conversely.
let B be a square matrix of (n—1)> numbers

P T PRy T g 5 T |
and let x, y, and z be a triple of vectors, belonging to vector spaces of the dimensions
I, n—1, and n—1, respctively. If their components are
x={A4}}, y={4h, .., A, o1, A}, z={4) AT AT, A7
then the matrix of the n? numbers 4 will be denoted by

(B.X.y.2)
Clearly, (B, x,y, 2)[j]=B.
For each square matrix B of (n—1)? numbers., we introduce a function gy
on the triples of vectors of dimensions 1, n—1, and n—1 by defining its value for
the triple x,y.z as follows:

gs(x. ¥, z) = f((B, X, Y, 2)).
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For each B, by virtue of (I' =), the function g, is subadditive in x and y for each
z; by virtue of (I;=), it is superadditive in x and z for each y. According to the
theorem on functions of three vectors, loc. cit®), the function g,, therefore, is additive
l)in x and y for each z, and 2) in x and z for each y. Because of 1), the function f is
additive in the j-th column: because of 2) it is additive in the j-th row. This comp-
letes the proof of Theorem II.

Clearly, a function that is additive in a certain array assumes the value 0 for
each matrix in which that array is O. (The italic letter O will denote an array each
element of which is the number 0.) Hence Theorem Il has the following

Corollary 1. A function [ satsfving Postulates (I*=) and (=) (1 =i, k=n)
assumes the value 0 for each matrix including an array O.

It further follows that, since f is additive in the first column,
f(A) = f(B))+f(B;) + ... +f(B,),

where B, is obtained from A by replacing with 0 all elements in the first column
except A!. Since f is additive in the second column,

f([".} :f(811)+f(8|2)++f(8.‘n} for l‘::ii_“_ﬂ.

where B ; is obtained from B; by replacing with 0 all elements in the second column
except A;.

Continuing this producere one can represent f(A4) as the sum of n" terms of
the form f(B; ;,. . ), where B; ; . is the matrix whose k-th column, besides
4}; includes only O (for 1 =k =n). With at most n! exceptions, each of the n" terms

equals 0 since every nonexceptional matrix includes at least one row O. The n!
exceptional matrices are those for which i, ..., i, is a permutation = of 1, ..., n.
Such a matrix, obtained by replacing with 0 all numbers in A4 except exactly one
in each array, will be denoted by Amn and called quasi-diagonal.

Corollary 2. If [ satisfies Postulates (I=) and (1;=), then

(1 f(A)= 2 f(4n),
where the summation is extended over the n! permutations of 1,2, ...,n.

We shall call Ay a cross-element of the matrix A if all the 2n — 1 other elements
in the row A, and the column A’ are 0. (The cross-element itself may or may not
be 0.) If the cross-element A} is positive, then from (II'=) and (II, =) it follows
that

(2) f(A)=Aj-f(A%),
where A* denotes the matrix obtained from A by replacing Ay, with 1. If the cross-

element Ay is negative, then let B denote the matrix obtained from 4 by replacing
Al with — A}, Since A, + B, = 0 and f is additive in the rows, it follows that
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f(A)+f(B) = 0. Using (I'=) and (II,=) we find
f(4) = —f(B) = —(— A})-f(4%) = Ah-f(47).

If AL:O. then f(A)=0. Thus (2) holds for each cross-element.
Since in the quasi-diagonal matrix An=B8; ; each element Aikk IS a cross-
element. it follows that

f(Ar)=A} - A}~ ... A} -f(D7),

where Dr is the quasi-diagonal unit matrix obtained by replacing each cross-element
of A with 1. From (1) it thus follows

3) f(A)=3 Ai,- Ai,- ... AL, -f(Dn).

n

The equality of f(A) with the determinant |A4| will be established by proving
that in (3)

(4) fIlDn)=1 or -1 according as m is an even or odd permutation.

Since by virtue of IV, (4) holds if = is the identity we merely have to show that
Jf assumes opposite values (thus either 1 or —1) for any two quasi-diagonai unit
matrices obtained from one another by interchanging two rows.

Consider a quasi-diagonal matrix 4 with cross-elements Ay =1 and 4] =1.
We shall say that 4 contains

1 O

0 1y.
The matrix 4" obtained from A4 by interchanging the columns 4’ and A4* (or. which
is tantamount, the rows A4, and A,) contains

Oh Ih
1§ of
and is otherwise identical with 4. In order to prove f(A) = —f(A’). let C” be the
matrix that contains
i gk
0 L
[

but otherwise is identical with 4 and A", Since the j-th column of C” is O, Corollary
1 implies that /{C")=0. Now A" and C” differ only in the i-th row. The matrix ”
obtained by adding the i-th rows of 4" and C” contains

o 15
1
Since f is additive in the rows it follows that
AC) = flA)+AC") = f(A).



A self-dual theory of real determinants 12T

Similarly,
JC)=[(A),
where C is the matrix containing
I 1 2§
0;' l: (h#1, j#=Kk)

and otherwise identical with 4 and 4". Now C and C’ differ only in the j-th column.
The matrix 4" obtained by adding the j-th columns of C and C’ contains

I In
g o1x’

From Postulates (II'*=) and (III,; =) it follows that f(A4”)=0. By virtue of the
additivity of /. we have

AO)+AC) = f(A") = 0 and thus f(A4)+f(A4") = 0.

This completes the proof of Theorem I.

( Received December 5, 1962.)



