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Considerations concerning the complex roots
of Riemann’s Zeta-function*

By E. GROSSWALD (Philadelphia, Pa.)

1. Introduction

For s = o +it, let {(s) be the RiIEMANN zeta-function and denote. as usual
by 0 the least upper bound of those values of o, for which {(¢+if) = C. Then it
is well-known that } =0 = 1. The first equality, 0 =1, would assert the truth of the
famous Riemann hypothesis, while the second, ! =1, would assert that inside the
..critical strip”™ 0 =6 =1, there is no zero-free vertical strip adjacent to o =1.

There are many known equivalent formulations, i. e. necessary and/or sufficient
conditions for the truth, resp. the negation, of the Riemann hypothesis. And in
what follows, the already lengthy list of such criteria receives some further additions.
At this time such an action requires some justification: hence, a few words concern-
ing the purpose of this paper are in order. This is to indicate (besides some rather
routine generalizations of results due to M. Riesz [2] and G. H. HARDY & J. E
LittLEwooDp [1]: see Theorem 1) and one apparently new, but probably hopeless,
function theoretic approach (Theorem 4), two less hopelessly looking types of
criteria. The first appears in the form of Tauberian theorems. While statements.
equivalent to the Prime Number Theorem and the Riemann hypothesis, in the
form of summability and Tauberian theorems are not new, the author is not aware
of any results resembling the present Theorems 2 (A and B). Their interest seems
to lie in that it is sufficient to prove or disprove the validity of a certain equation
for any one of the functions of a certain class, in order to determine the value of 0.

The criteria of the other type mentioned (Theorem 3) may be considered as
analogues of the classical formula /(x) = x + R(x), where R(x)=0(x?) or o(x),
respectively, accordingly as 0 <1 or 0=1.

2. Notations and definitions

In order to state the results succinctly, we need a few notations and definitions.

We shall say that a function R(x) is of exact order 2, if R(x)=0(x**%) and R(x)=

=Q(x*7%) (i.e. R(x)=0(x*"*)) for any ¢=0, as x ~==. In general, & stands for a

positive quantity, that may be taken arbitrarily small; /...n’s stands for an integral
(a)

* Part of this work was done under contract with the Office of Naval Research Contract No.
NONR-551(43).
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along a parallel to the imaginary axis, of abscissa &, usually taken between well-
defined, indicated bounds; j stands for the Euler—Mascheroni constant.

Definition 1. @ ={g¢(s)} is the set of functions of the complex variable

s = o+ it. analytic for o = monotonically increasing for real, positive, increasing

2 L]
argument and satisfying the conditions:

]
(D {(28)-q(s)| = Ce=™"l[¢|'+% as |1] ===, for fixed o,--{z

(or aé; if le), with C=C(0)=0,e=¢(6)=0; and
1

(11) lg(s)|* = o= as 6~ 4 o= for fixed 1.

REMARK. @ consists of functions that behave essentially like I'(s): [(s), s".
and also log* (s+1) are elements of @.
On account of (II), the series > (— 1)"'--':;!-)- converges absolutely for everv
m=1 /8
complex y: hence, it represents an entire function that we denote by £ (—y) or
E(—y), whenever there is no danger of confusion. If E(—y) = O(y' %) for
y—+-= and some &=0, then _l_;-*“" 3E(—y)dy converges for }—e=ag<1.
]
The convergence is uniform in every closed subinterval and the integral represents
there an analytic function of s, which we denote by H (1 —s) or H(} —s). if there
is no danger of confusion. The same symbol denotes the function obtained by analytic
continuation of H(4—s) outside the strip of convergence § —c <o <1.

Definition 2. @, @ is the subset of functions ¢(s)< @ satisfving also
(1) E (—y) = O(y' ), for some =0 and

(IV) H,(3 —s)#0 for —} =0 <0.

REMARKS. a) I'(s)€ @,; hence, @, is not empty. Proof: It is trivial to check

red; also, E(—y) = > (=12~ = —ye-», so that (Ill) holds. Finally.
m=1 r“"]

L

H3-5) = —-."__r‘"“’i ye~¥dy = —I'(4—5)#0; hence (IV) holds and I'(s)¢®,.

0
b) The conditions defining ¢ and @, are sufficient for our purpose: but they
are far from necessary. They have been selected as stated for convenience. being
satisfied in many cases. Occasionally some ¢ ¢ @, will be considered and the desired
properties will be proven directly, without appeal to the general theorems.
For every ¢ € @ we define also the following functions:

Definition 3.

-1 x* 1
(ﬂ') Fq. (‘) = F(I) = —2’—f'; (23) P (S) Sl]‘ﬂfzi}_ ds for 2 =0=<1 3

()
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- 3
(b) Gq(s)=6(5)=\/‘F{x).\'_"_?(f.‘t‘ for O-r:a'-c:-%.;

0

(-1"
purer — Y B - P PR
() S,(s) = S(s) m—« {2myg(m)’

S |

) $i(9)=56): Su0)=[S,- (vt for n=1;

(e) V(v) =S = = --(ZHT)_(}-(W)

_-;e q
exp (e’ +v) for v=u,
0 for v<u.

(f) for u,v real, K, (v)= K(U).:{

Obverse that F(1)=S(1)=V(0); also S(r)=S() for 0 =r=2.

3. Main results

With preceding notations, the main results can now be stated as follows:

Theorem 1. a) If qgc®, then F(x):éjl( l)ms(2m)

with o= -g- in particular, F(x)=o0(x*%). Also, F(x)=Q(x!") rmph'es 0=1.

— and F(x)=0(x%)

0
b) If 9@, then F(x) is of exact order 5
And F(x)=0(x*7%) is the necessary and sufficient condition for the validity of the
Riemann hypothesis.

Theorem 2 (A). If ¢c®,, then:

in particular, F(x)=Q(x*"%).

a) lim j x*~'log x S(s)ds = — S(1); more generally,
X—be

ne

b) lim fx-‘" log x S(s)ds = — S(1) holds for 0 <r<2 and is false for r=10.

X=boo

¢) If ro =lim r, where R={r} is the set of values for which b) holds, then r, = 0.

d) If b) holds for any ¢, ®, and some r, then it holds, with the same r, for all
gE@,, and 0=r.

e) If for some g, ®, and some r=1, llmf\" "log x S(s)ds = — S(1), or

x-oaa
if the limit does not exist, then the same is true w Hh the same r for all other ¢ <@,

and O =r. In particular. if that is the case for any one function ¢,€ @, and all r=1.
then 0=1.
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f) A necessary and sufficient condition for the validity of the Riemann hypothesis
is that there should exist some function q,€ ®, such that for every &=0,

-

1
lim [.\"- 4 _zlog xS(s)ds = —S(1).

Xwem

,+£

g) If @ and 0<r<2, then
F(x?) = j xs:log" x S, (s)ds + x(S,(r) + S,(r) log x + ... + S,(r) log"~ 'x).
h)y If ge®, O=r—=0, then, as x ==, for any fixed n,

F(x*) = {1 +0(l})f.\"“-log" x-S, (s)ds;

hence if ¢ €®,, then also j .x‘-log" x-S,(s)ds is of exact order 0, for every n.

r

Theorem 2 (B). If ¢ €@, then, as u-—~ + - through real values:

a) fK,,(u) V(u—v)dv = — e V(0) (1 +o(1)); more generally, for —log2=p=0
and u':';fr t=log 0(=0),

b) fl\’,ﬂ_(r) Viu—v)de = —e" " “V(0) (1 +O(exp {€"(e" —e?)})).

gt + 6

H—s

¢) If o, =liminf g, where P=1{p} is the set of those g, for which lim e~
ocP

. f!\'“,_,(v} V(u—v)de = — V(0). then o, =t=log 0.

d) If the equality of ¢) holds for any qo€ ®,, and some o then it holds for all
g €®, with the same p and = 9.

e) If for some qo€ @, and some o(—log2=p<=0), the equality fails to hold
in ¢), then, for the same o, it fails to hold for all ¢ € ®, and t= . In particular, if
for any one ¢, € @, the equality in c) fails to hold for all p <0, then 1 =0 and 0 =1.

f) A necessary and sufficient condition for the validity of the Riemann hypothesis
is that there should exist some function o€ ®,, such that the equality in ¢) should
hold for every o= —log2. (p=0)

Theorem 3. /f n = pi'p¥-...ops" (;=0), @ = o, + a2+ ... + an=b, denote as
(-1 if b=a
0 if hb=x«

usual by p(n) the Mobius function p(n):{ ; set A(n)=(—1) and
(logp, if b=1
/l(n):l 0 ehanitast Then the following relations hold;
otherwise
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(a) _lmn) "= Ry(x) (see [2));
B 3imEe

2 L(n) nze Mo R

e x e "‘ 1
© 3 Am) e *
n

e (mx)? + R3(x);

=
I
)

2 X

M

x -E k

(d) "2,4(31) -:Fe i — —4--(115.\')2 + Ry (x);
oo 2 -"

e J ua(n) — e "

n
-

,(2} + Rs(x):

(f) Z ip(n) - (l i ") = é) ‘(Iog x+2y —2? (2))+ Ry (x).

The functions Ry(x) (i=1,2, 3,5, 6) are of exact order 3 ; in particular, all
are Q(x‘:' “)and a(xll). (Ry= O(x: +E). not necessarily Q(.r;_t) ). Furthermore if
=1 and M(x)= é;p(n) =0(xg(x)) (g(x)-0, xg(x) - monotonically, as
X —===), then R,(x) =a(,\‘;_} can be

the estimate
1
0 {g(x) +g[,\')‘:‘g(‘\'zg(x)““)}.

1
R,(x) =x'= .

in pamcuiar. g(x) = expl-:log x}
1
(with ¢=3--2"7), it follows that R,(x) =o(xZe " "

improved to
Taking,

) for every f§ = 2’ -6~ 1o
ReMARK. Similar improvements are possible for the other R,(x)

Theorem 4. Deno!e by ¢2 @ the set of those functions ¢ € @, for which the entire
Sunction ¥Y(u)= >

— is of order <% (or of order }
s l'|l+ ] [l

L, minimal
type ). Unless @, is empty, 0=1.

4. Some comments

a) Theorem 2(B) follows from the more natural Theorem 2(A) simply by the
change of variables u=loglog x, v = —logs, o=logr, T=logf. It is quoted here
mainly because it appears in a form familiar from other Tauberian theorems

b) In case 0=1, i

the estimates F(x)=o(x*) can be sharpened, using M(x) =
=0(xg(x)). as in Theorem 3.

¢) One may extend ad lib. the list of formulae in Theorem 3.
d) The relevance of the results seems to lie in that it is sufficient to find even
1

a single function ¢ € @, for which it is possible to show that the (unlikely looking)
D11
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statements of Theorem 2(B) are actually false for r <1 (or ¢ <o, resp.). It would
follow that 8 =1. Or else, it might be possible to estimate by methods of elementary
number theory at least one of the sums occurring in Theorem 3 (or a similar one)
with sufficient accuracy, in order to obtain at least some non-trivial bounds for 0.
Finally, there might be a faint hope to construct a function ¢ € @, (although. most
likely, @, is actually empty), which also would be sufficient to settle the problem.

5. Proofs
PrOOF OF THEOREM 1. (see [1] and [2]). If ¢ € @, consider the integral F(x) =
1 x*
-— | = - ds. On account of (I), the integral converges for
[s(ZS)qvts} sin (ns) 3 ”

(e)
4 =0 <1. Integration along the rectangle } +i7, N+ 1 +iT, Cauchy’'s theorem on

residues, followed by the successive passages to the limit 7~ and N — = (using
(I)) leads to

e \m
s If 0 <1,
fms)«r(s)sm(ns) 2 e 1 01

then, using the propcrtles of ¢(s) and LiTTLEW0OOD's theorem?) (see [3]. pp. 282—

283) that for ar> i , [{(28)| =" =o(|t|**), the line of integration may be moved to

0
g=}%+e. It follows that F(x)=0(x? H). If 6=1, one may take ¢ =1 and, by
the convergence of the integral and the Riemann—Lebesgue theorem one obtains

1

F(_x)=0(x-2‘); this proves part a). For part b), we assume that g € ®,. As F(x)=
1

=0(x?) for x+o and F(x)= — (I+o(1)) for x—0, it is clear that

(2) (1)
Gg,(ar):fJF'('_x)Jnc_s *dx converges for 0=o¢ <134, and uniformly in any closed
0

subinterval. Hence

oo 3 - 3
N f Y O
2 s S‘———- A X = X " S‘ e l“
i f ) {...:-. qn(m)c(zm)}d‘ JT S e e

As both series converge absolutely,

gl k= o (-—l)"'(%) o i
o & 3 v i B W S 1 .
G(s) = [,1 2 un) 3 om) dx = /,x (2 p(n)E( = ))d,\,

n=1 m=1 N
v 0

3 . i
As g€y, by (D) [u(nx "2 E(_ ;2)

1)y LirrLewooD’s mathod permits us to prove the present statement, although the original
formulation asserts less.
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and the series converges uniformly in x, justifying termwise integration, which yields

4 r_,.3
Gl)= 2 _u(n)-f.\‘ ' 2E(-—i2)dx =
n=1 n
0
o [yt x)of)- #{3-)
SRR A n? n? {(2s+1)
0

N
raa
n=1

| e

valid at least for }—e<o<1. If F(x)=0(x*)(x<}), then fF(x)x 2 dy

HG-9) .
{(2s+1)
By (IV), H(1 —5)#0 for —} =0 =0 so that also ((25+1)%0 within the over-
lapping part of these ranges, or, for o, = 26+1 in 2x<0, <1. Hence, 0= 22,
finishing the proof of Theorem 1.

converges for « —4 <o <14; consequently, is regular within that range.

PROOF OF THEOREM 2(A). Using the uniform convergence of S(s), one obtains,
for every 0 =r<=2:

- oo

N, T (=" &
] x*log x S(s) ds —f X '08-‘(_ ; ‘;—@W-(m*))d’ -

=

r r oy
2m
o ( l)m o (_ l)m
= > ————.] x*logxdx = D 2m_ x") = F(x¥)—x"S(1),
= (2m)g(m) | PPIEF = = L@2myg(m) v ) e
or, dividing by x7,
(%) [ xo-rlog x S(s)ds = — S(1) + x~"F(x?).

Assertions a)—f) now follow immediately from (%) on account of Theorem 1.
For g), observe that for every finite a, S(s) =o(log~'a-a—°) as o -~ ==; hence, S,(s) =
=o(log=?a@-a=”) and, by induction on n, S,(s)=o(log~"a-a=?). Therefore,

f x*(log' x) S,(s)ds converges, lim x*logi~'xS,(s)=0 and, integrating by parts.

o

r

fx’log.\‘ S (s)ds = —S,(s)x* log YJT 4
+fx" (log x)S,(s)ds = S,(r)x" log .\'+fx’ log* x S, (1) =

= x7(S,(9) log x + S5(r) log? x + ... +5,() log"'x) + [ x*log" x 5,(s) ds.
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By () the first member equals F(x?)—x"S;(r) and this finishes the proof of g).
Finally, for fixed n, x ?Sj(r}logi Ix=x"8,(r)log"~'x(1+0(1)) as x-—-= and
this proves h) and ﬁmshcs the proof of Theorem 2(A).

REMARK. S,(1)=S,(r) for 0 =r =2, while S,(1)# S,(r), in general.

Proor oF THrOReM 2(B). With the changes of variables indicated under 4.,

( %) becomes fK,H,(u—v) V(v)de = —exp {e**?} V(0)+ F(e**"). Using Theorem I

and the convoluuon theorem one obtains b) of Theorem 2(B). The particular case
0 =0 yields a) and the other assertions follow as in Theorem 2(A).

Most statements of Theorem 3 could be proven in a unified way, by an appeal
to the theory of MELLIN transforms. However, in some cases, it seemed preferable
to avoid said theory and to rely, instead, upon the following

r e
Lemma. Let q(s) = %F &, with :J%;;)-) = g(s) + ";; ’:;"_‘— , where the Dirich-
1

let series converges at least for o= 50

-3 q(m)
-1 x*=[L{x)
m;l ( ) r { ) {
P il 3
converges for every |x| = =, and G,(s) = j x  2L(x)dx converges at least in some
0

strip ¥ —e=a <=1%. Then with F(x) and G(s) as in Definition 3,

X

F(x) = L(x) — m%“l a,,,%e "™ is of exact order 5 if 0=1,

| r(s+2) ])2.

: 1
— -2 74 —— o — — —_——— — -—
F(x) =o(x?) if 0 =1 and G(s) = G,(s) r(z s)) ITES) q(s+ :
PROOF. As in the proof of Theorem I,

S ! o AR
Fix) / {(28)T () sm(ns}

h‘”
[

0 T +e
converges at least for § =¢ = 1, more generally, for o= 5 so thatitis O(x? ),

1

or o(x?), if 0=1.

Also. as in Theorem 1, the integral equals ..§|('“ 1) J".:-m) f;(”:i}
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Hence.
'_,';,_m.\"" _i+”-a.:
F(x) = m‘:‘l ( 1) r(m) (q(”) 1 n%[ nlm)
\ m
LX)+ 3 Zx(—n"-—L — L0 - 3 a e
oo, "-) met a"m-—-l (f"—'l)‘ . X) w=1 e ﬂze y
Finally,

. 3 - ik x
G(s) = /‘.\'-"_3 F(x)dx =fx_',_3 {L(x) -2 a, ;:;zer'_‘} dx =
. n=1
1] 0

. 1 X
SIS N e P P ORI A T
= n23+l./("2) . d(nz) P T F(Z $
0
|
-‘ ! f(”'i) I
= 'q(s-l— 2) - - -F(-z-—s).

(@2s+ 1))

The interchange of integration and summation can be justified at least in the strip
}—t=06-<=1 and the Lemma follows.

) _ 5 nw
5 T i
The result now follows directly from the Lemma with F(x)—R (x).

PROOF OF THEOREM 3. a) Let f(s)=1, i.e. g(s)=1I(s), and

. I'(s) f(s) {(4s) f (n)
= : i o ey s It
(b) Let f(s)={(4s), ¢(5)= F(4s) and 9(25‘) 1,(25') n":"1 -5 The resu
follows from the Lemma, with F(x}—Rz(r)
<(2s) f(S) 4 l 1 - A
. — = Ty
(¢) Let f(s)={"(29)+ %—1" {3 :{2) T -
1 5 « 0 - L B
g(s) = P By the Lemma, F(x) = ?_[(C (2s) + e l)' F(.&)_SirT:is'-",s =
(m) :
X" 1 0
= - )™ i : if 1= o(x?
L I( 1) Tm) {, (2m) + 2m—l} is of cxact order 2 (if @=1) or o(x?)
(if 0=1). Also,
S ‘;' 3 o xm o V-
o R B e L. (2m —1)I (m)
o} “
1 ' L ! . I 1
= —x? [f“"'dﬂ = — x2 {,) 7 - /(""“ (fu} i~ (nx)*+ O(e™ ™).
IJ i of P4

X<
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1
(nx)? = X
Hence, by the Lemma, — > + > A(n) ;2— " = F(x)+ O(e~%) = Ry(x),
n=2

0
so that the order x of R,(x) satisfies = 5
3
For the opposite inequality, consider G(s) =/‘.\‘_S-EL(.\') dx =
2 <t % 2 0
= —]x—”“{[ du} dx = —fe*"‘{/x'“‘ d.\‘} du. For o=0, this equals
(] 0 0 P
1 e o : 1 | BT T
——Ju?*e*"du and, if also o< -, G()=—— [u*e*du=
5 2 i
& . 0
P v_‘l"' e~'dv = ——]-F L —-5). so that, by the Lemma
— 2s 2.5‘ - da ] y ]
0

2
g T ) 241 =1 - )5'2+|+—l—
(.9)——'2; 5"5 _—'5 ..( +1) 5—3 E(S )25 .

. )
whence follows, as in the proof of Theorem 1, that « = {,

(d) Let f(s)=(2s—1)-{"(2s), ¢(s) = ')

— € . Although the Lemma
(2s—-DT@2s)
is not directly applicable, one may proceed as in its proof and obtains that
1

for —2-§a-cl F(x) = ,[“’(25) 2

s
T (s)sin : I
£ (2s) (2s—1) i ds converges and equals
. A . |
mg’l _1)m r‘( ) i l) r (2’") Hence, F(\) = 0(‘.

) if 0<1, F(x) = o(x?)
' g1, Alse e 3

S - Ll _._\_. - “ (") = \“ ( )
m='l ( I} r( ) (2’" l) H n= I A(n)g ’12
where g(u) = Z (— )"' l)' " =e "(2u* —u);

hence,
e " 4 F,(x), where F,(x)

F(x) = —2 ﬁ’ A(n)-

- P Al Z e Ry
n=2 n-

the function considered under
c). It easily follows now that «, the order of R (x)

_ : 0
= Ry(x)— F(x) satisfies a=_.

The proof is completed by computing G(s)—f F(x)x = 2dx = —2sI'(4 —s)-
6

Lot

-—(2s+1). which proves that x«,

the order of F(x), (but not necessarily =, the
order of R4(x)), satisfies o, =

o
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e) Let f(s) = (s—1) {(s). The proof proceeds as for d), except that now the
l (s-- 1) xds el s 1 :
residue of — TR YT at s=1 18 (2m‘ )C_(Ej' so that, denoting the

integral by F(x), it follows that?)

0 +e 0 it o
F(x) = —.(2)+ Z( (m—2)! tom) O(x? )(or o(x?) if 6=1).

Furthermore,

F(x) = mf 2( 1y - mz)' ; iu(n)l

-
-

x: -2 E
C(2)+ Z’ [ (n)| - —e = 0(x*) with a = 5

For the inverse inequality we use MELLIN’s reciprocal formulae written as (see
[5), p. 246, with 1=x"1)

G(s) = [x~1=*g(x)dx.

0

1
o(x) = o fG(s)x ds.

(o)

. 1 3
3
The function G(s)= i

fes 1) - is regular for 0<=¢<%. Setting it

1
equal to / x~'=5x 2 F(x)dx leads to the inversion formula
0

()
_\-‘5n.\-;=.._l_/5 % e SNTR, fs(s)r(z—s)‘

el -~ oy Z(25)

()
1 1

2ds =

1
"L, [_xj-;_(s)(l —9r(-g) , __x2f x(—1@)
2ni {(2v) e 2i J ((25)I (s)sin(7s)
(7} ()
*) The term obtained formally in the sum for m=1. namely - E ) is meaningless.

i (—-D'52)
If we write it, however, as ;(—‘23 :—U"T-:—)‘I—(}f:l: and agree to replace {(m—1)-Z(m)}n=1
s 2 H m=1

g : : X
by unity, we obtain precisely —
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F=Y

o D B X _ _f ™
hence, if F(x) = 5i f——i(lr) F G ds, then G(s) = | x F(x)dxy =
(a)

0
1 3 | 1
(o 2)r(3-2) (- 2)(+3)
.2 2— :_r(l J) 2 2 and it follows. as in

{@s+1) {@2s+1)

2

Theorem 1, that uzg completing the proof.

£) If f(s)=C{(s), ¢(s) =TI (s)/{(s) still belongs to &. But now q t¢, and the
pole at s =1 is double and has the residue ,‘: logx+2y—2- ¢ {2)) . Hence,
27i {(2) 3

“a

(S) "-. =g o ‘:r . y
) = _-./",(Zs) I'(s) sin 7s i '(2)(10gH o C (2))

. L 9 Lim) - > 0
+m‘§2 (=1 I'(m) C2m) and F(x) = O(x*) with o= 5

From

S L) S lu(m)| =
ZElrgoalss 3 Ciraae 280 = Z Wil (1~

0 : . .
now follows the statement of the Theorem, except for x= 3 This last inequality

is obtained as under e) by using MELLIN’s inversion formula to prove that

oo _.\-j [ C(s‘-{--%)
G(s) ZjF(.’l‘_)x 2dx = — r(2 —3) i bt
0

{(2s+1)

1
Finally, it remains to show that the estimates R;=o(x?) can be sharpened even
X

if 0 = 1. The proof will be given in detail for R,(x)= > u(n) "\2 e "™ and proceeds
n=1
along similar lines in the other cases. Let g(x) be a function such that M(x)=
= > u(n)=0(xg(x)), g(x) -0, xg(x) - == monotonically, as x -~ . Such functions
n=x

are, of course well-known. Denote by n, the integer closest to x2{g(x)} < where
¢ is a positive parameter, to be selected later. R,(x) = X! + 2. Also,

n=ng n>ng
1 I

122 =x 2 12-: i‘f_“ +e)x?{g(x)}*=x20({g(x)}). By partial summation
o -:| ¥ Ae p s x __iL'E |
|‘;'|I‘_| 2 (M(n)— M(n—l))( ) "Eél P M(n)(”ize n:__(H__”_Z‘. me )|

n=ng
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| &

+ | M(no) I)’e 0+ 17 One observes that D‘")z("_z)" (n+l)ze a1

lends to zero as n (provmonally treated as a continuous variable) tends to either
1

zero or infinity: also, D(n,)=0 for a value n, = x? — 5 The extrema of D(n)

i 1 "
are taken for n* =2x, when D= —?-e_ 2x 2(140(x"") and for n? :% when

1 P | i |

D=—12/3e 3x J(I - 9:;3 X 24+0(x" l)): hence, [D(n) =0(x ?). Consequently.
1 1

| 2 M(n)D(n)| =x 20( 2 IMm)]) = X 20{ng-nog(ng)} = x 20 {x(g(x))*-

=g n=ng
1 1 i

g(x%g(x)~9)} ———xiO-{g(.\‘)‘z‘g(.\"fg(.\"}“')}. Finally, the last term in |2>''| is
1 1
of lower order, namely O(nyg(ny)- g(x)*e #7*) = O{.\Eg(.\*)‘g(.ﬁg(x)“‘)} =
1 1

= {g(x)}¥*x?20{(g(x))*-g(x2g(x)=°)} and is absorbed into the previous term.
on account of the factor {g(x)}¥ which tends to zero for x -, ¢=0. Hence,

l(.\)—(Jc ) O{g(.\)‘+g[.\}‘2‘g(‘\‘zg(x)‘“)}. as stated. The proof of the last
assertion of Theorem 3 reduces to a simple computation.

PROOF OF THEOREM 4. Let us assume that § <1 and that &, is not empty; we
shall arrive at a contradiction. Consider the function of a complex variable

e =nm
Y(Ez)=z'"2m ¥~ for some ¢¢ @ and an arbitrary natural integer
=2 (n\ (n
*(2)“(2)
i mi =i
m. If z—~- along the ray z=xe?" (x=0), one obtains ¥(xe2™) = ie3"x!~3"-
L F(x*™) 4+ i Fy(x*™)}, with
3 1 [ yds - o
Fi()=—©+ [+ = D) for 0<0o<1;
1) 2:]g(s)q'(8)sm(m) 25 tem '

(@)

and
1

. s e - o
1 »ds _ha )

Fg(}') —_— 5 / == I = e 5 I_ S |
'] = n=] a5
@ C(s)g(s)sin {n (s— 2)} u..(ﬂ* 2—)?-(n+ 2)

for 0<o<1.

The first equalities define Fi(x) (=1, 2) while the second ones are proven as in the

ni

proof of Theorem [1. It follows that F,(x)=0()"*%); hence, *P(xez"') -
=g(x!-2m(1-0+2) [ etting m, =smallest integer in excess of 3(1—6)~"', it follows
that, for m=m,, the exponent of x is negative and ¥(z) -0 as z - along the



170 E. Grosswald: The complex roots of Riemann's Zeta-function

selected ray. We make the change of variables z" =w. Then

1.2 u"
¥(z) = 4™

if along some ray going to infinity ¥(z) -0, then it follows a fortiori that

(WZE

]

v=u?S o= 3 <
n=2

(BTN CR e
(e (-9

(W1

E]
I
—

as u == along the corresponding ray, w=iy(y=0). However, by assumption &,
15 not empty: hence there exists a function ¢ €@ for which previous conclusions
hold and such that ¥,(u) is of order less than 1/2, (or of order 1/2 and minimal
type). But then, by WiMaN's theorem (see [4], p. 275), (or by its extension to functions
of order 1/2 and minimal type®)) ¥,(u) cannot stay bounded along any path going

10 infinity, contradicting ¥,(#) -0. Hence, unless @, is empty, 0=1.
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