Admissible direct decompositions
of direct sums of abelian groups of rank one

By L. G. KOVACS (Manchester)

The starting point of the theory of ordinary representations is MASCHKE's
Theorem, which states that every representation of a finite group over a field whose
characteristic does not divide the order of the group is completely reducible (see
€. g VAN DER WAERDEN [6], p. 182). A partial generalization of this theorem has
recently been given by O. GRUN in [2], and the main step of the classical proof of
the theorem has been generalized by M. F. NewmaN and the author in [4]. Both
of these results arose out of a shift in the point of view: they do not refer to repre-
sentations, but to direct decompositions of abelian groups, admissible with respect
to a finite group of operators (in the sense of KurosH [5], § 15). The aim of this
paper is to present an extension of GRUN's result, exploiting the start made in [4].
The terminology follows, apart from minor deviations, that of Fucus’s book [1].

From [4], only a special case of Theorem 2.2 is needed here:

Lemma. Let X be an abelian group, and G a finite group of operators on X': sup-
pose that (every element of) X is divisible (in X ) by the order of G, and that X has
no element (other than 0 ) whose order is a divisor of the order of G. If Y is an admissible
subgroup of X which is also a direct summand of X, then Y has an admissible (direct)
complement in X,

The result of this paper is the following.

Theorem. Let A be a direct sum of abelian groups of rank one, and G a finite
group of operators on A; suppose that A is divisible by the order of G, and that A has
no element (other than 0 ) whose order is a divisor of the order of G. Then A can be
written as a direct sum of admissible, G-indecomposable subgroups, each of which is
a direct sum of finitely many isomorphic groups of rank one.

The proof splits into several steps, and occupies the rest of the paper.

(A) A is a direct sum of countable admissible subgroups each of which is a direct
sum of groups of rank one.

ProoF. Let A=2X(C;:4 <0) where the C; are groups of rank one, ¢ is an
ordinal, and 4 runs through all the ordinals which precede o. Denote the correspond-
ing canonical projections A —~C; by y,. For each ordinal u such that u=ao. one
makes simultaneously the following definitions. Let AJ=set (u). If i is a finite
ordinal and A} a countable set of ordinals preceding o, let C,=ZX(C;:4¢€ A}), and
let C,G be the smallest admissible subgroup containing C,. Then Cj, is countable:
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as CiG is generated by the countably many elements cg with ¢c€C}, g€G, C,G
is also countable. Hence C,Gy; =0 for all but countably many values of /; so that
the set A.*! defined by A,*! =set(i:4 <0, CjGy, =0) is countable. This inductive
definition provides an increasing chain A;SAlS...S A4, S ... of countable sets
of ordinals. In turn, one constructs another increasing chain by defining its general
term A* as A*= U (AL:u<=v, i=w), for every ordinal v with v=g¢. This chain has
the following properties:

(Al) A° is empty.

(A2) If ¢ is a limit ordinal, g =0, then A¢= U (A:p<0,i<w)=
= L.J[U (A:,: H=Vv,i<=w): r=cg] = U{(A":v<=p).

(A3) If p<=v=o0, then puc A*; for pe A< A".

(A4) If /<o, then the difference set A*+' — A* is countable: for it is a subset
of U(AL:i<w) and each A% is countable.

Correspondingly, C*=X(C;: A€ A") defines an increasing chain of partial sums
of X(C,: ~=a), with the properties:

(AlY) C=0;

(A2") if g is a limit ordinal, p=¢, then C*= U (C":v=p);

(A3) C°=4;

(A4) if =0, then C**1/C* is a countable direct sum groups of rank one.

Moreover, each C" is admissible; for, Cv is generated by the elements ¢ with
c€C;, A€ A, and, if A€ AL, u=v, i<, while g is an arbitrary element of G. then
cg€Ci*'=C". Thus each C* with A<¢ is an admissible direct summand in the
admissible subgroup C#*!, and so the Lemma, with X=C**! and Y =C% gives
that C* has an admissible complement, say D;, in C**'. In view of D, =C**'/C*
and (A4'), it suffices to prove that 4 =X (D;: 2 <o). This, in turn, will follow from
(A3’) and the general relation C*=2X(D,: 2A<v) which holds for every v with v=g0.
The validity of this relation is proved by a simple induction: it is valid if v =0,
because of (A1°); if it is valid for the predecessor v—1 of v, then C*=C"" '+ D,_, =
=X(D;:A<v—=1)+D,_, = Z(D;: A<v); if it is valid for every v preceding a
limit ordinal ¢, then C*=U(C*:v<p) = U[Z(D;: i<v):v<g] = Z(D;: A=0).
by (A2).

(B) Being a direct sum of groups of rank one, A is the direct sum of its maximal
p-subgroups A4, and a torsion free subgroup A,. The A, are characteristic and
therefore admissible subgroups, and so, by the Lemma with X =A, Y =2 A4, (wherc
p runs through all primes), 4, can also be chosen admissible. Moreover, both A4,
and the A4, are direct sums of groups of rank one. This and (A) make it possible
to assume, without loss of generality, that A is countable and either a torsion free
or a p-group. The torsion free case will be discussed first.

(C) If A is torsion free and B is a subgroup of finite rank in A, then A has a direct
decomposition A=A"+ A" such that A" is of finite rank and contains B; moreover.
both A" and A" are admissible subgroups of A, and are direct sums of groups of rank
one.

PrOOF. In order to prove this assertion, one first notes that there is no loss of
generality in assuming that B is admissible and pure in A. The justification of this
can be outlined as follows. Let B be any subgroup of finite rank and S a maximal



256 L. G. Kovacs

independent subset of B. Consider the set SG defined by SG =set(sg: s€ S,2€G):
this is finite, for both S and G are finite. Let B; be the set of those elements of A
which depend on SG; this is an admissible subgroup of A: for, if a, b€ B; and
g€G, then ma = ms, g, +... +msg, nb = nys,g, +... +ms8 with suitable
integers m, m, ...,m;, n,ny,....,n, m#0=n, and elements s,g,, ..., 58, of SG:
so that mn[(a—b)g| =Z[(mn—mn)s,;g,g: 1 =i=k]. mn#0 shows that (a—b)g is
dependent on SG and hence belongs to B . It is easy to see that B, contains B and
is pure in A; moreover, its rank cannot be greater than the cardinal of SG. Thus
B can be replaced by B;.

Let it be assumed therefore that B is admissible and pure in A. Consider an
arbitrary decomposition of A into a direct sum of groups of rank one:

(C1) A=Z(C;: A€ A),

with the corresponding canonical projections y;: 4 — C;: and define a subset A(B, C1)
of the index set A by A(B, Cl) = set(4i: A€ A, By, =0). It is easily seen that this
subset is finite: if § is a maximal independent subset of B, then B consists precisely
of those elements of 4 which depend on S;s0,if 0 =b€ B, then nb = n;s, + ... + ms,
for some integrs n, n,, ..., n,, n#0, and elements s,, ..., s, of S; if Sy, =0, then
{nb)y, =0 and, as C; is torsion free, n(by;) = 0 and n # 0 imply that by, =0; so that
one has A(B, Cl) = set(4i: A€ A, Sy, #0) which, since S is finite, proves the fini-
teness of A(B, Cl). This subset is used to define (B, Cl), a set of types of torsion
free groups of rank one: put A(B, Cl) = set(T(C;): 1€ A(B, C1)); this set of
types is clearly also finite.

The statement (C) will be proved by induction on the cardinal (B, Cl)| of
A(B, Cl). If A(B, Cl) is empty, then B=0 and so (C) s trivially true. Hence one
can procede to the inductive step: let B=0, and let (C) be assumed to be true for
every choice of A, G, and B to which there is a decomposition like (C1) which yields
a cardinal smaller than [2((B, Cl)|. Let a be a maximal type in (B, Cl), and
put A, =set(A: €A, T(C;))>aqa), A, =set(i:A€A, T(C,) =a), and 4, =
= set(4: A€ A, T(C;)Za). The three sets so defined are pairwise disjoint and their
union is A. Let A' = X(C,;: A€ A,); then A' is the characteristic subgroup of A4
which is generated by the elements whose types (in A) are greater than a;so A" is
admissible. Moreover, A' is a direct summand of A, for 4 = A' + A, with
Ay = X(C;: A€ A,1J Ay), and B is contained in this complement A,. Consider the
torsion free factor group A/B: this has a direct decomposition 4/B = (A' + B)/B+
+ A,/B, with (A'+ B)/B admissible. Hence the Lemma, with X=A4/B and
Y = (A' + B)/B, implies that (A4'+ B)/B has an admissible complement, say
A*/B, in A/B. As A'NA*=(A'4+B)NA* = B and A'NB =0, A* is in fact
an admissible complement of A' in A. Let z be the canonical projection of A
onto A* corresponding to the direct decomposition

(C2) A = Al + A%,

If acA, and a = a' +a, with a'€A4', a,€A4,, then az = a'o+a,2 = a2, sO
that A* = Ax= A,x. As A, avoids the kernel A' of x, it is mapped isomorphically
by a, so that in fact A* =4 ,a=X(C,x: 2€ A, A,). It is convenient now to change
from (Cl) to the new decomposition

(CS) A = Al+ A¥ = Z{Ci:;.EAI)“.‘Z{(‘;_'I:;.EKIZ:.J /13] = ZlD,:/‘.‘\‘:;l]
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where D, =C, if A€ A; and D; =C,x if 1€ A, U A;. Of the corresponding canonical
projections d,: A—D,, one has to observe the following. Since B=A* =
=X(D;: 2€A,'JAy), Bo; =0 whenever Z€ A;. On the other hand, if A€ A, A;,
then o; =y,u: for, then 26, =40, by definition; if @ is an arbitrary element of A,
then a=2Z(ay,: u€A); also, y,2=0 if uc A, and Ay, a=D, if pe A, U A5, so that
in this second case y,20;, =0 if u+#4 and 3,20, =y,2 if u=4; and hence it follows
that ao, =axd, =X(ay,xd;: p€ A)=ay;x. Also, if 1€ A, A5, then the kernel of «
avoids C; and so. in this case, Bd, = By,z =0 is equivalent to By, =0. These observ-
ations vield the conclusion that A(B, C3) = A(B, Cl), and so A(B, C3) = A(B, Cl)
as well.

Next. consider the subgroup 42 defined by 42 =X(D,: 2€ A,). This subgroup
can be described as the set consisting of 0 and the elements of type a in the admissible
subgroup A*: so that 47 is characteristic in A* and hence admissible. Also, 42
is a direct summand in 4* and so the Lemma, with X=A4* and Y= A2, provides
that 4% has an admissible complement, say 4%, in A*. Thus A has the admissible
direct decomposition

(C4) A= A"+ A2 + A3;

let the corresponding cannonical projections 4 — A* be denoted by «;, for i=1, 2, 3.
Clearly A3 =Aay;=X(D;: A€ A3)ay: as X(D;: /. € A;) avoids the kernel 4' + 42 of
15, this subgroup is mapped isomorphically by 2y, so that 43 =X(D;ay: i€ Aj3).
Put E,=D, if A€ A{UA, and E, =D,x, if A€ A,: then (C4) can be refined to the
decomposition

(C5) A=Z(E;: A€ A).

Like in a similar situation above, one checks that, for the canonical projections
¢;: A—E; corresponding to (C5), Be; =0 if e€ A, and o6, =¢; =023 If A€ A5,

Put B> = Bz, and B? = Bu,; both B? and B? are of finite rank, and B= B? + B>.
If B3,=0, then Z¢€ Ay and so B3, = Buye;, = Be, = Bd,», shows that also Bd; =0.
Hence A(B?3, C5)E A(B, C3)= A(B, Cl), so that A (B3, C5)<A(B, Cl): moreover,
as T(E;)=T(D,;)=T(C;) for every 4 in A, and as A(B?3, C5)< A,, the type a does
not belong to (B3, C5). Hence A(B3, C5) is a proper subset of A(B, Cl), and
therefore the induction hypothesis applies to A%, G, B®, with the conclusion that
A3 has an admissible direct decomposition 4% = V4 W such that V is of finite
rank and contains B?, while both ¥V and W are direct sums of groups of rank one.

Finally, consider B?. By the initial step of this proof, 4> has an admissible
pure subgroup U of finite rank which contains B2. The set A(U, C5) is a finite
subset of A,; put U'=Z(E;: A€ A(U,C5)) and U”"=Z(E;: A€ Ay — A(U, C5));
then A2 = U'+U" and U=U’. Now U is a pure subgroup of the direct sum U’
of finitely many groups of rank one which are all of the same type a:; so that a theorem
of Cernikov, Fuchs, KerTEsz, and SzeLe (Theorem 46. 8 in Fuchs [1]) implies
that U is a direct summand of U’: hence U is a direct summand of A% as well. As
U is admissible, the Lemma (with X = 42, Y = U) provides that U has an admissible
complement, say U*, in A%, It follows from a theorem of BAer (Theorem 46. 6
in FucHs [1]) that both U and U* are direct sums of groups of rank one.

It remains to put these results together: A = A' + A2+ A3 = A' +(U+U*)+
(VL W) =(U+V)+(A' +U* + W); all these summands are admissible sub-
groups and direct sums of groups of rank one; U + V is of finite rank: and B= B* +

DIns
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B3*=U+V; so that 4" and A" given by A" = U+V and A" = A'+ 1" —W
satisfy the claims made in (C).

(D) If A is torsion free, then A can be written as a direct sum of admissible sub-
groups of finite rank such that each of the summands is a direct sum of groups of rank
one.

ProoOF. In view of (A), A can be assumed to be countable: moreover. only the
case when A is of infinite rank needs investigation. Let 4 = 2(C;:1=i=w) be a
direct decomposition of 4 in which all the C; are groups of rank one. According
to (C), A can be written as C'+ D! in such a way that C, = C", both C' and D'
are admissible subgroups and direct sums of groups of rank one, and the rank of
C' is finite. Suppose that, for some positive integer n,

(DI1) A=C'+C*+..+C"+D"
is an admissible direct decomposition of 4 in which all the summands are direct
sums of groups of rank one, all but the last are of finite rank. and C, +... - C, =

=C'+...+C". Let 6 be the canonical projection of 4 onto D", corresponding to
(D1). Then C, .6 is a subgroup of finite rank in D", and so (C) provides that D"
has a direct decomposition D" = C"*! + D"+ ! such that C"*' and D"+ 'are admissible
subgroups which are again direct sums of groups of rank one, C,.,0=C"""'. and
Cr+lisof finiterank. Thus 4 = C' +... 4+ C"+C**' + D"*! andnow C, +... - C,+
+Cpiq = C'+...+C"+ C"* 1, so that a decomposition like (D1) has been obtained
for n+1 in place of n. This inductive process defines a subgroup Ci for each positive
integer i. It is easily seen that the subgroup generated by the C? is their direct sum,
and it contains all the C;. Therefore A = X(C':1=i=w), and this is a direct
decomposition satisfyng the claims made in (D).

(E) If A is torsion free, then the Theorem is true.

PrOOF. According to (D), it can be assumed that A is of finite rank. In this
case A is trivially a direct sum of G-indecomposable subgroups: it remains to prove
the assertion about the structure of its G-indecomposable summands. Let B be an
arbitrary G-indecomposable summand of A4, and let B=0. First, a theorem of
BAER (Theorem 46. 7 in Fuchs [1]) gives that B is a direct sum of groups of rank
one. Let B = C, 4 ...+ C, with all the C; of rank one, and let 0 be a maximal
element of the set of types T(C)), i=1, ...,n. Put B, =2(C;:T(C;)=q) and B, =
=Z(C;:T(C)) #q); then B = B, + B,. The subgroup B, consists precisely of 0
and the elements of type a in B, so that B, is characteristic in B and hence admissible.
Thus the Lemma, with X = Band Y = B, , gives that B, has an admissible complement
in B; as B is G-indecomposable and B, =0, this complement can only be 0. Hence
B, =B, so that all the C; are of the same type a.

In view of (B), it is possible to assume for the rest of the proof that A is a count-
able p-group. In (F) a special case will be discussed, and (G) will provide the key
to the general case.

(F) If pA=0, then the Theorem is true.
ProoOF. If A is finite as well, this statement is trivially true. Let 4 be countably

infinite; then 4 =X(C;: 1 =i <=w) where all the C; are of order p. For each positive
integer j, let ¢/ = X(C;: 1=i=j), and let C/G be the subgroup generated by all
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the elements of the form c¢g with ¢€ (7, g€ G. Then all the ¢V and the C/G are finite;
C/=Ci*' and C'=C/IG=C/*'G hold for every j; and U(C/: 1=j<w) = A, so
that also U (C/G: 1 =j=w) = A. Since now every subgroup of 4 is a direct summand
of A, and since the C'G are admissible, the Lemma (with X=C/*'G, Y =C/G)
gives that each C'G has an admissible complement, say D;,,, in the corresponding
C/+1@G. In addition, let D; = C'G. Then it is easy to see that C/'G=X(D;: 1 =i=j)
holds for every j, so that A= U(C/G: 1 =j<=w) = U[Z(D;:1=i=j):1=sj<w] =
=X(D;: 1=i=w). Each D, is admissible and, being contained in the finite C'G,
finite. Therefore each D, is a direct sum of finitely many finite G-indecomposable
subgroups, so that the direct decomposition of 4 obtained above can be refined
to one in which all the summands are finite, admissible, and G-indecomposable.
This refinement satisfies the Theorem.

(G) Let T be an admissible, G-indecomposable subgroup in the socle S of A.
Then T is finite, and A has a direct summand B which is admissible, G-indecomposable,
and whose socle is precisely T, moreover, B is G-indecomposable.

Prook. It follows from (F) that 7 must be finite. If 7=0, then B=0 will do;
hence suppose that 7=0. Let k be one of the ordinals 0, 1, ..., w; then p*4 is a
characteristic and hence admissible subgroup of A. As every subgroup of T is a
direct summand of 7, the Lemma can be applied to X =T, = TMp*A4, with
the conclusion that 7(p“4 has an admissible complement in 7. Since 7 is G-inde-
composable, it follows that either 7(p*4 =0 or TNp*A=T. If T=p A, let m=w.
If TNp»A=0, then T\ p*4A=0 for some finite ordinals k: but not for all, for
T=A=p A. Hence the first of the ordinals k for which 7 p*4 =0, can be written
in the form m+ 1, and then T=p"4, Tp"*+14A=0.

Since every subgroup of S is a direct summand of S, the Lemma can be applied
to X=S8. Y=T with the conclusion that § = T+ U for some admissible subgroup
U. Let U, = UNp*A, for k=0, 1, ..., w; then SNp*4 = T+ U, for every k with
k=m.

Let it be agreed that w —i = o for every finite ordinal i.

Put B,=T. If m =0, suppose that, for some ordinal k with k <m, and increas-
ing chain B,, ..., B, of admissible subgroups has been defined in such a way that
B;=p™"iA, T=p'B;, and B; has T as its socle, for i=0, ..., k. Let V/B; be the
socle of p"~*-14/B,. As the socle T of B, intersects U, _,-, in 0, the subgroup W
generated by B, and U,,_,_, is their direct sum: W = B, + U, _,-,. The factor
group W/B, is an admissible subgroup in V/B, and, as every subgroup of V/B,
is a direct summand of V/B,, the Lemma (with X=V/B,, Y= W/B,) provides that
W/B, has an admissible complement, say B,,/B;, in V/B,. The subgroup B, .,
so chosen is admissible, contains B,, and is contained in p™~*-'A4. The socle 7~
of B,,, contains T and is contained in S(\pm-*-14; hence, as SMp"~*-14 =
=T4+Upt-y, T'=TH(T'NUp-4-1)- On the other hand, one knows that
T'"NUgep-y = By NW = B, so that T'"NUp—4-1 = BN Up—x-; = 0; hence
it follows that 7° = T+0 = T. Next, note that pB,,, = B, is an immediate con-
sequence of the choice of B,,,. On the other hand, if b€ B,, then B, = p"*4 =
= p(pm—*-14) implies that b = pa for some a in p™-*-14; for thisa, a + B, € V/B, =
= (By+Uy—x-1)/By+ B,y /By, so that a = u+b" with ueU,,_,_,, b’€B,,,, and
this shows that b = pa = pu+pb" = pb’cpB,,,: hence B, =pB,.,. Thus in fact
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B,=pB,;.,, and therefore T=p'B,=p**+'B,,,. To sum up: B,, ..., B,, B,,, has
all the relevant properties of B, ..., B, with k+1 in place of k.

If m is finite, this inductive process provides in a finite number of steps a sub-
group B, in this case, put B= B, . If m =w, then the process provides a subgroup
B, for every finite ordinal k: in this case, let B= U (B,: 0=k =w). In each case.
the socle of B is precisely 7. In the first case, every non-zero element of 7" has height
min A (for T=p"A but T\ p™*'4=0), and its height in B isalso m (for T=p"B,, =
=p"B); hence [e. g. by J) on p. 78 of FucHs [1]] Bis a pure subgroup in 4 ; moreover,
B is bounded, so that a theorem of KuLikov (Theorem 24. 5 in Fuchs [1]) implies
that B is a direct summand of A. In the second case, every non-zero element of 7
is of infinite height in B (as T =p*B, =p*B for every finite k), so that B is divisible
[see e. g. (f) on p. 59 of FucHs [1]], and hence, acording to a theorem of BAEr
(Theorem 18. 1 in FucHs [1]), B is a direct summand of 4. By construction, B is
admissible; and the G-indecomposability of 7" implies that B is also G-indecompo-
sable. This completes the proof of (G).

(H) If 4 is a p-group, then A =XZ(C,: 2 € A) where each C; is either cyclic or of
the type C(p~), Let C=X(C;: A€ A, C; cyclic) and D=X(C;: A€ A, C,=C(p7)):
then D is precisely the maximal divisible subgroup of A4, so that D is characteristic
in A and is therefore also admissible. Now the Lemma (with X'= 4, Y = D) provides
that D has an admissible complement C”" in 4. Of necessity, C”" = C, so that C’ is
a direct sum of cyclic groups. Hence it suffices to prove the Theorem under the further
assumption that A is either divisible or a direct sum of cyclic groups.

(1) If A is a divisible p-group, the Theorem is true.

Proo¥r. In view of (F), the socle S of 4 can be written as a direct sum of finite,
admissible, G-indecomposable subgroups 7,, with 4 running through some index
set A. According to (G), each T is the socle of some admissible, G-indecomposable
direct summand B; of A. Each B, is of finite rank. for its socle T; is finite, and each
B, is divisible: hence each B, is a direct sum of finitely many (isomorphic) divisible
groups of rank one (that is, of groups of the type C(p~ ): by another theorem of BAER,
Theorem 19. 1 in Fuchs [1]). The subgroup generated by the B, is their direct
sum, and it is divisible: moreover, it contains the whole socle of A4: hence
A=X(B,: L€ A).

(J) If A is a direct sum of cyclic p-groups, then A is a direct sum of bounded
admissible subgroups.

ProoOF. Now all the direct summands of A which are of rank one are cyclic
groups. If A4 is of finite rank, then A itself is bounded, so there is nothing to prove.
In view of (A), it can be assumed that A4 is countable, so that in the remaining case
A=X(C;: 1 =i<=w) where all the C; are cyclic. Let S be the socle of 4 and S, the
socle of C;, for each i: then S=ZX(S;: 1=i<w). As before, VG will denote, for
each subgroup V of A, the subgroup generated by all the elements of the form vg
with veV, geG: VG is always admissible; and, if V is finite, then so is VG. Since
A is a direct sum of cyclic groups, p”4 =0, and so each finite subgroup of 4 must
have zero intersection with p*4 for some positive integer k.

Let k(1) be the first positive integer for which S,G M p* "4 =0. Since S pt4g
is characteristic in A, it is also admissible. Let S' = S,G +(SMp*VA4): then S'/S,G
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is an admissible subgroup and a direct summand in the elementary group S/S,G.
On applying the Lemma to X' =S5/5,G, Y=5'/S,G, one obtains an admissible
complement, say 7,/S,G, for §'/S,G in S/S,G. As T, and S' generate S, and as
S$,G=T,, T, and SNp*"MA also generate §; moreover, T, N(SNptVA4) =
= OSSNV = §,GN(SNPFVAL) =0; s0 that in fact S =T, +
+(SNpk4).

For an inductive construction, suppose that 7', ..., T;, k(1), ..., k(j) have
already been defined, in such a way that 7, ..., T, are admissiblz subgroups,
Si4.+S=2N+...+T;, k()=...=k(j),and S =T, +...+ T, +(SNp"4)
I‘or every i with 1 =i b; Let 7 denote the canonical projection of' S onto SMptiA
corresponding to the direct decomposition § = T, + ...+ T, +(S1p4), and
let k(j+ 1) beeither k() or the first positive integer for which SJ-+ GrNpi+ 4 =0,
whichever is the larger. Check that S;, ,Gn is admissible. Similarly to the application
in the preceding paragraph, the Lemma can be used to prove the existence of an
admissible complement 7;,, of SMpU+V4 in S(p*"4 such that S;,,Gn=
=T;4,. It can easily be seen that the hypothesis carries over to 7, ..., TJ, Tiv1s
k(1), ..., k(j), k(j+1).

This process defines, for each positive integer i, and admissible subgroup T;
and a positive integer k(i). The subgroup generated by the 7, is their direct sum,
and it contains all the S;, so that it is equal to S. Thus, if 7, +... + T is denoted
by 77, one has that S= U (7Y: 1 =j<w). Moreover, S = T/ J-(S‘| q;"“‘A) for
every positive integer j.

Next, let B, be a subgroup of 4 maximal with respect to being admissible and
having T for its socle. For another induction, suppose that B,, .... B; are already
defined in such a way that they form an increasing chain of admissible subgroups
and the socle of B, is T' whenever 1=i=j. Then B, intersects 7,,, in 0, for its
socle does: so the subgroup generated by B; and T, is their dlrecl sum B; +T;.,,,
and its socle is 77 ', Thus it is possible to choose B,H as a subgroup which contains
B;+T;., and is maximal with respect to being admissible and having 77+ ' for its
socle. This process provides, for each positive integer j, an admissible subgroup
B;, such that these subgroups form an increasing chain, and the socle of each B;
is the corresponding 77.

Observe that, for each j. B; and p*/'4 intersect in 0, for their socles do so.
Therefore one can speak of the direct sum C of B; and SMp"4 in A. Let U be
the socle of A/B;; clearly, C/B; is an admissible subgroup and a direct summand
in U. Hence, according to the Lemma, C/B; has an admissible complement, say
B/B;, in U. Now B is admissible, and B[ C= B;. The socle of B contains 77, and
so it is T/4+(BNSNpIA); but Bﬁ(Sﬂp"”'A} = BNCN(SNpN4) =
= B;Np*"4 =0, so that in fact the socle of B is just 77. Hence, by the maximality
of B, it follows that B= B;: therefore U= C/B;. Now if E is any subgroup of 4
such that B; <E, then E/B;(\U = E/B;(1C/B;=0, and so EMNC= B;: it follows
that E(Np*) 4 =0. Thus B; is maximal among all the subgroups of 4 which intersect
PMPA4 in 0, so that a Lemma of M. ERDELYI (Lemma 1 in [3]: or, the main step
in the proof of Theorem 24.8 in FucHs [1]) proves that B; is a direct summand
of A.

Hence the union of the B; is pure in A [e. g. by F) on p. 77 in Fucss [1]]: and
it contains the union of the 77, which is the whole socle of A4: so that in fact
\U(B;:1=j<w) = A [e.g by K) on p. 78 in Fucss [1]]. Put B' = B,, and apply
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the Lemma (with X=B8;.,, Y=B;) to obtain an admissible complement B/*!
for each B; in the corresponding B;,,. Then it follows readily that B; =
= Z(Bi: 1=i=j) for every j, and s0 A = U(B;: 1=j<w) = LJ[Z(B‘: 1=i=j):
| =j<w] = Z(B':1=i<w). Here all the B' are admissible subgroups, and
pPOBi =B Npti4g=B,Np*I4 =0 shows that they are all bounded subgroups as
well,

(K) If A is a direct sum of cyclic p-groups, the Theorem is true.

Proor. In view of (J), it may be assumed that A is bounded: say, p"4 =0. Let
the socle of A be S. Fori=1, ..., n, let T, be an admissible complement of S(p'4
in SMNp'~'A4: such complements exist, for each SMp‘4 and SMp'~'A4 is charac-
teristic in A and is therefore admissible, and each subgroup of S is a direct summand
in every subgroup of S which contains it, so that the Lemma can be applied to
X=8Np4 ¥Y=80Np"A Then S =Ty+...+T,, md 8 = Ti+...+T:+
+(SMpiA) for every i. As in the proof of (J), one constructs admissible subgroups
B', ..., B" such that

(K1) A= B'+..+ B,
the socle of B' +...+ B’ is precisely T, +...+T;, and
(K2) BN piA=0,

whenever | =i=n.

One checks that the socle of B'is precisely 7, and that 7, =p' 'B', as follows.
The assertion is trivial for i=1; in fact, B'=T,. Let | <i=mn and 1€7;. Then
1€pi 'A; say, t=p'~'a, ac A. Writeaas b, + ... +b,, according to (K1). By (K2).
priby = =9 10,1 =0, 50 that

(K3) t=p'-la=p-th+...+p-1b,

On the other hand, (K3) is a decomposition of 7 corresponding to (K1), and 1€ B' + ...
...+ B, so that one must have r=p' 'b,. This proves that 7;=p' 'B'= B'. Since
now the socle of B' contains 7; and is contained in 7, + ...+ T;, it is in fact
T;+[BN(Ty,+...+T,_,)]; but BN(Ty+...4+T;_,) = BN(B'+... + B 1)=0,
and so the socle of B’ is precisely 7. Also, (K2) implies that p(p' 'B’) =0, so that
p'~'Bi=T;: the converse inclusion has already been seen, so that 7,=p' 'B'

It follows that every non-zero element in the socle of B is of height i —1 in
B', so that B is a direct sum of isomorphic cyclic groups of order p'. This and (K1)
imply that it can be assumed without loss of generality that A is a direct sum of
1isomorphic cyclic groups: each of order p™, say. The proof will be completed under
this additional hypothesis.

In view of (F), the socle S of A4 is a direct sum of finite, admissible, G-inde-
composable subgroups 7, . According to (G), each 7, is the socle of some admissible,
G-indecomposable direct summand B; of 4. The B, are then also direct sums of
cyclic groups of order p™, as is every direct summand of A: the subgroup generated
by the B, is their direct sum, and it contains the whole socle S of A: it is also a direct
sum of cyclic groups of order p™, so that it must be the whole of A. Finally, each
B, is finite, for its socle T, is finite.
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The steps (B), (E), (H), (I), (K) together prove the Theorem.

Remark. After the preparation of the paper had been completed. PROFESSOR
ReiNHOLD BAER kindly called the attention of the author to the fact that a combi-
nation of results of KurLikov and KAPLANSKY implies that every direct summand
of 4 is a direct sum of groups of rank one; this would allow some minor cuts

in the present proof.
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