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A study of sequences of equivalent events
as special stable sequences

By A. RENYI and P. REVESZ (Budapest)

Introduction

Let {Q, S, P} be a probability space and A4,, 4,,... be a finite or infinite
sequence of events (i.e. 4, A4,,... are subsets of Q belonging to the g-algebra §)
in this space. The events A, are called equivalent (or symmetrically dependent, see
[1]) if the probability of the event') A4; A,,...4; (i;#i, if j#1) depends only on k
and it does not depend on the indices i,, i,, ..., i;. The simplest examples of sequen-
ces of equivalent events are the sequences of mutually independent events having the
same probability . A more general example is the following: Let A, (1) (0=t=1;
n=1,2,...) for every fixed 7+ be a sequence of independent events, such that
P(A,(1))=1t(n=1,2,...)and let A(w) be a random variable with valuesin the interval
[0, 1]. Then A,(%)is a sequence of equivalent events, provided that A,(2)= J (4,(1)N

D=¢=1
N(A(w)=1)) are events (n=1,2, ...,) i.e. they are elements of S.

One_can ask which sequences of equivalent events can be represented in this

form. In connection with this question an important result is due to DE FINETTI

[2]. (See also [3], [4] and for generalisations [5].) It is the following:

Theorem 1. Let A, A,, ... be an infinite sequence of equivalent events and put
P(AIAZ"'Ak) =Wy.
Then there exists a distribution function F(x) such that

F(0)=0, F(1+0) =1

and
140

o= [ *dFx)  (k=1,2,..).
0

In view of this theorem a very natural conjecture is the following: every infinite
sequence of equivalent events can be represented in the mentioned form; or with
other words: if 4,, 4,, ... is an infinite sequence of equivalent events, then there
exists a random variable A(w) (0=4i(w)= l) such that the events 4,, 4,, ... are

') Here and in what follows the product of events denotes the joint occurrence of these events
(that is the intersection of the corresponding sets).
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under the condition A(®w)=x independent, and have the probability x, i.e.
P(A, A;,...A; |AM(@)=x) = x* (with probability 1).

In § 2. of this paper we prove the above mentioned conjecture (Theorem 2.).
Before doing this in § 1 we give a new proof of pe FINETTI's theorem. § 3. contains
some remarks on equivalent random variables.

§ 1. A new proof of de Finetti's theorem

We recall some definitions and results of paper [6]. A sequence of events 4, , A4,,...
is called a stable sequence if

(1. 1) lim P(A,B)=Q(B)

exists for every event B¢ S. It is easy to see that Q(B) is a measure which is absolutely
continuous with respect to P. Let the Radon— Nikodym derivative of Q with respect
to P be A(w), i.e.

Q(B) = [ i(w)dP, for BesS.

B

The random variable 4(w) is called the local density of the stable sequence 4, A,, ....
Clearly 0=/(w)=1.
In [6] it is proved that if {4,} is a stable sequence of events with the indicator

functions z,(w). 1. e.
1 if weA,
) o= 0 if wea,

then =z, converges to 4 weakly i. e. for every element g of the Hilbert-space Lj(Q)

(1.2) lim (g, ,) = lim [gz,dP = [gidP = (g. ).
-ere nse g a
If £ is constant (with probability 1) the stable sequence A4,, 4,, ... is called

mixing (see [10]). Itis shown further in [6] that in order that a sequence {A,} should
be stable it is sufficient that the limit

IimP(A4,A4,)=Q(A4,)
should exist for each k =1, 2, .... It follows evidently that every sequence of equiva-
lent events is stable. Using these facts a very simple proof of DE FINETTI's theorem
can be given.

THE PROOF OF DE FINETTI'S THEOREM. Let the local density of the sequence
A,, A,, ... of equivalent events be A(w), and we denote the indicator function of
A, by a,. Then we have

w, = P(.AHAEJ"“—!I‘J,) -_'-J 2;‘2;:...11L (I(P - (1“1!':.. x : # 4

iy - ?
n

).

i
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Thus by (1. 2)

@y = lim (2, %,...2 &) = (@, %, ... & 2) = (o, %,...

i TR * -

;! 1:‘,_.)-

igp-2"
[ -

Applying the same argument again, we obtain

TR B

Ty g~ Sig=-2

o = lim (o a,...0, _,4, 0, )= (a2

fjo | ~ooe

Applying the same argument again k —2 times, we obtain that

1
(1. 3) oy = P(A;, Ay ) = [ #@)dP = [ x*dF,(x)
]

2

where F;(x) is the distribution function of A(w). Thus the theorem of DE FINETTI
is proved.

As a matter of fact we have proved somewhat more, namely that for any k =1,
for any set of k different positive integers i, i,, ..., iy and for any r with 0=r=k
we have
(1.4) P4, Ay, A4) = |  2-(w)dP.

DA Aiy... A,

Clearly (1. 4) reduces for r =0 to (1. 3), while in the other extreme case r =k (1. 4)

is trivial. We shall need (1.4) in the course of the proof of Theorem 2 in § 2.
Now we show how to any distribution function F(x) such that F(0)=0 and

F(1+0) = 1 a sequence {A,] of equivalent events can be constructed such that

1
P(4;,4,,..4;) = o, = _l x4 dF(x)
0

for any A =1, 2, ... and any set of different integers i, i,, ..., ;. Such a sequence

{A,] can easily be constructed in any nonatomic probability space, by using the

evident fact that the sequence {w,] is absolutely monotonic, i.e. (putting @, =1)
1

A"w, = 2 (”_)(— w,.; = [.\"’(l —x)'dF(x)=0, for r=0, n=0,
i=0 J :
However, our example gives much more, as it exhibits explicitely the local density
/(w) and shows that the events A4, are in fact conditionally independent under the
condition A(w)=x and have the probability x, for any x with 0 =x<=1.
Let the probability space © be the unit square of the plane, i.e.

Q :I]X;Z

where /, and /, are unit intervals. Let the probability measure P on Q be the product
measure
P= i Xofls

where , is the Lebesgue — Stieltjes measure on /, defined by the distribution function
F(x) and p, i1s the ordinary Lebesgue-measure on /.

D 21
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To define the events A4, we need first to define a set of polynomials

P (x) =0 1, 3% ... 2 1= ..}
as follows: p"(x)=0, and

k
pi"i,(x)=_z;xdnw(lwx)ﬂnw for k=0,1,...,2"—1
J=

where o,(j) resp. f,(j) denote the number of zeros resp. ones in the dyadic expansion
of j/2"; more exactly if

J < Bj .
i O e
» = 2% where ¢ is 0 or 1

then
B.(j) = E e and a,(j) = n—B.(j).

Thus — for instance —
PP(x) =0 PP(x) = x*+2x2(1-x)+ x(1—x)?
PR (x) = x3 () = x3+3x*(1-x)+ x(1-x)?
PP =x3+x2(1—-x) pP(x) = x*+3x2(1 — x) + 2x(1 — x)?
PR(x) = x3+2x2(1—x) pP(x) = x3+3x2(1 —x) + 3x(1 — x)?
PO(x) = x*+3x2(1 —x) +3x(1 —x)* +(1-x) = 1.

In general we have pyX(x)=1 for n=1,2, ....
Now let By" be the set of all points (x, y) for which p5i(x) =y =p%. (x) and

let A, be the union of the sets B{” (k=0,1,2,...,2"-1—1).
It is easy to verify that the events A4, are equivalent and

1
P(4;, Ay, 4;) = @ = [ X*dF(x) for k=1,2, ... and iy<iy<...<i.
0

Clearly A(x, y)=x and the events A4, are independent under the condition ~=x
and all have the probability x (0 =x<1).

Let us mention that the well known theorem of HAUSDORFF [9] — according
to which a necessary and sufficient condition for a sequence {w,} to be absolutely
monotonic is that @, should be the k-th moment of a distribution function in the
interval (0, 1) — follows easily from pE FINETTI'S theorem. Thus the theorem of
HAUSDORFF in question can be proved in a purely probabilistic way.
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§ 2. The general form of a sequence of equivalent events

The aim of this § is to prove the following

Theorem 2. Let A, A,, ... be a sequence of equivalent events. Let /i(w) be the
local density of the sequence {A,} considered as a stable sequence. Then we have*)
2.1 P(A;,A;,.. A, |AM(w)) = o) with probability 1
for k=1,2, ... and iy <i3 < ... <}

Proor. First of all we prove (2. 1) for k=1. Let us assume that
(2.2) P(4,/2) = A(w)+e(w).

Here ¢,(w) is a Baire-function of A(w) by the definition of conditional proba-
bility (see [7]). Put &,(w)=g,(A(w)) and let %,(w) denote the indicator function of
A, . Let us denote by M(¢) the expectation of the random variable & and by M(&|n)
the conditional expectation of ¢ with respcet to the random variable n. In what
follows we shall use repeatedly the following well known properties of conditional
expectations (see [7]): for any & for which M(¢) exists and any 7

2.3) M(&) = M(M(&m))
further
(2.4) M(g(n)éin) = gnM(E|n)

where g(x) is a Baire function. Now we have by (1. 3), (2. 2) and (2. 3)

P(4,) = [2dP = M(M(x,)) = M(i+8,)

o

therefore M(g,) =0 (n=1,2, ...).
Similarly, using (1. 4), (2. 2), (2. 3) and (2.4) we have

P(A,A) = [ 22dP = [7dP = M(ix) = M(M (3] 2)) =

0
= M(AM(%,/2)) = M(A(A+2,)) = M(42) + M(Jz,).

Therefore M(4g,) =0 (k=1,2,...). Similarly we obtain
1
M) = [ ¥, (DdF,0) =0  (1=0,1,2, ...; k=1,2, ...)
(1]

where F;(x) is the distribution function of A(w). The fact that the sequence {x"}
is a complete sequence in the space L},(0, 1) (the space of functions in the interval
[0, 1] which are sqare integrable with respect to the measure defined by the distribu-
tion function F,(x)) ([8]), implies that g,(x) is equal to 0 almost everywhere with
respect to the measure defined by F;(x); thus we have

P(e,=0) =1 (r=12,...)

2) P(B|#) denotes the conditional probability of the event B under the condition that the
random variable / takes on a fixed value.
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The proof for k =2 is completely similar to the above proof. Let us put
P(AA}|7) = i +gy

where ¢;; is a Baire-function of Z. With these notations we have

P(4;4;) = M(xa)) = f).la‘P = M[M(2;a;42)] = M(2%2+¢;)
Q
and therefore
M(EU) —= 0.
Similarly

P(A, A A4) = [ 22dP = [1dP = M(z2;4) = M[M (2,2, 1)] =

0 Aidj
= M(Z(M(2;2;/4))) = M(4(A% +&;;)) = M(2%)+ M (%g;;)
SO
M(/g;) =0
and in general we obtain

M(e;;A")=0 for n=0,1,... i.e. P(g;=0)=1.

The proof of (2. 1) for any value of k is essentially the same.

§ 3. Equivalent random variables
Let {,, ¢,, ... be a finite or infinite sequence of random variables. The random
variables {,} are called equivalent if the distribution function

. - - - o {x B i e E b
Fxy, X3, .5 X,) = Pi&y, <X, &1, <X3, 0005 &1, <X

depends only on n and x,, x5, ..., x,, and it does not depend on the sequence of
different integers i,, i, ..., i,. One can ask what are the generalizations of Theorems
1. and 2. for equivalent random variables.

A sequence {&,} of random variables is called a stable sequence (see [6]) if the
sequence of events A4,(x) = {£,=x]} (n=1,2,...) is stable for every x belonging
to a set X which is everywhere dense on the real line. Let / () denote the local
density of the stable sequence {A,(x)}. If / (w) is a constant for every x¢ X, the
sequence is mixing (see [11]). Clearly any sequence of equivalent random variables
is stable in the above sense.

Let us denote the event {¢, < x| by A4,(x). It is evident that A, (x) (n=1, 2, ...)
is a sequence of equivalent events for every x, if {£,} is a sequence of equivalent
random variables. Let the local density of the sequence A,(x) be 7 (w).

The following result is valid (see {2] and [3])

Theorem 3. /f .. &5, ... is an infinite sequence of equivalent random variables
then

P < %1, &< Xzs <oy =X = Fy(Kps wovs %) = [ 4,,(@0)... 4 () dP.
2
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Clearly 4 (w) as a function of x is a distribution function for almost all .

The proof of this theorem is exactly the same as the proof of Theorem 1.

The evident generalization of Theorem 2 is the following statement: the equiva-
lent random variables ¢,, &,, ... are independent and identically distributed with
respect to F where F is the least o-algebra containing all the oc-algebras A,
(— oo =x<= + =) where A, is the smallest o-algebra with respect to which 4 (w)
is measurable.
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