On exceptional values of meromorphic functions

By S. K. SINGH and K. MANJANATHAIAH (Dharwar)

1. Let f(z) be a meromorphic function. For $0 \le |\alpha| < \infty$ let $n(r, \alpha)$ denote the number of roots of $f(z) - \alpha$ in $|z| \le r$. Further let $\overline{n}(r, \alpha)$ denote the number of roots of $f(z) - \alpha = 0$ in $|z| \le r$ each root being counted only once. For $\alpha = \infty$ let $n(r, \infty) = n(r, f)$ be the number of poles of f(z) in $|z| \le r$ and let $\overline{n}(r, \infty) = \overline{n}(r, f)$ be the number of poles of f(z) in $|z| \le r$ each pole being counted only once. Let

$$N\left(r, \frac{1}{f-\alpha}\right) = N(r, \alpha) = \int_0^r \frac{n(t, \alpha) - n(0, \alpha)}{t} dt + n(0, \alpha) \log r$$

and

$$N(r, \infty) = N(r, f) = \int_0^r \frac{n(t, \infty) - n(0, \infty)}{t} dt + n(0, \infty) \log r.$$

Let

$$\overline{N}(r,\alpha) = \int_{0}^{r} \frac{\overline{n}(t,\alpha) - \overline{n}(0,\alpha)}{t} dt + \overline{n}(0,\alpha) \log r$$

and

$$\overline{N}(r,\infty) = \overline{N}(r,f) = \int_0^r \frac{\overline{n}(t,\infty) - \overline{n}(0,\infty)}{t} dt + \overline{n}(0,\infty) \log r.$$

Then clearly $n(r, f') = n(r, f) + \overline{n}(r, f)$ and $N(r, f') = N(r, f) + \overline{N}(r, f)$ see Nevan-Linna [1, 105].

Let T(r,f) = T(r) be the Nevanlinna characteristic function. Let E denote the set of positive non-decreasing functions Φ such that

$$\int_{A}^{\infty} \frac{dx}{x\Phi(x)}$$
 is convergent.

Then we say that α is an e.v. E if

$$\liminf_{r\to\infty}\frac{T(r)}{n(r,\alpha)\Phi(r)}>0\quad\text{for some }\Phi\in\mathrm{E}.$$

See S. M. SHAH [2].

$$\delta(r, \alpha) = \delta(\alpha) = 1 - \limsup_{r \to \infty} \frac{N(r, \alpha)}{T(r, f)} > 0,$$

then α will be called e. v. N (exceptional value in the sense of Nevanlinna), see [1, p. 79]; and if

$$\Delta(r, \alpha) = \Delta(\alpha) = 1 - \liminf_{r \to \infty} \frac{N(r, \alpha)}{T(r, f)} > 0$$

then a will be called e. v. V. (in the sense of Valiron). Also let

$$\theta(\alpha) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, \alpha)}{T(r)}$$

and

$$\mu(r, \alpha) = \mu(\alpha) = \liminf_{r \to \infty} \frac{N(r, \alpha) - \overline{N}(r, \alpha)}{T(r)}$$

2. We prove the following theorem.

Theorem 1. Let f(z) be a meromorphic function such that

$$\sum_{1}^{\infty} \delta(a_i) + \sum_{1}^{\infty} \mu(a_i) = 1,$$

where $a_1, a_2, ...$ are any finite constants pairwise different, then, if " ∞ " is an e.v. E for f(z), it is also an e.v. E for f'(z) and conversely.

PROOF. ∞ is an e. v. E for f(z), so $\delta(\infty) = 1$, see S. M. Shah [2]. But, it is known that

(2.1)
$$\limsup_{r\to\infty} \frac{T(r,f')}{T(r,f)} \le 2 - \delta(\infty) - \mu(\infty) \dots = 1,$$

see NEVANLINNA [1, 104]. Also it is known that

(2. 2)
$$\liminf_{r\to\infty} \frac{T(r,f')}{T(r,f)} \ge \sum_{1}^{\infty} \delta(a_i) + \sum_{1}^{\infty} \mu(a_i) = 1,$$

see WITTICH [6,21]. From (2. 1) and (2. 2) it follows that

$$T(r, f') \sim T(r, f)$$
.

Now

$$n(r,f') = n(r,f) + \bar{n}(r,f) \le 2n(r,f)$$

Hence

$$\frac{T(r,f')}{n(r,f')\Phi(r)} \ge \frac{1}{2} \frac{T(r,f')}{n(r,f)\Phi(r)} > \frac{1}{2} \frac{(1-\varepsilon)T(r,f)}{n(r,f)\Phi(r)} \quad \text{for} \quad r \ge r_0.$$

Since " ∞ " is an e.v. E for f(z), it follows

$$\lim_{r\to\infty}\inf\frac{T(r,f')}{n(r,f')\Phi(r)}>0.$$

Hence ∞ is an e.v. E for f'(z).

Conversely if ∞ is an e. v. E for f'(z), we prove that it is e. v. E for f(z) also. Since $\delta(f', \infty) = 1$,

$$\lim_{r \to \infty} \frac{N(r, f')}{T(r, f')} = 0.$$

But $N(r, f') = N(r, f) + \overline{N}(r, f) \ge 2\overline{N}(r, f)$, so

$$\frac{\overline{N}(r,f)}{T(r,f)} \le \frac{1}{2} \frac{N(r,f')}{T(r,f')} \frac{T(r,f')}{T(r,f)}.$$

$$\limsup_{r\to\infty} \frac{\overline{N}(r,f)}{T(r,f)} \le \frac{1}{2} \limsup_{r\to\infty} \frac{N(r,f')}{T(r,f')} \limsup_{r\to\infty} \frac{T(r,f')}{T(r,f)} = 0,$$

SO

$$\theta(\infty) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)} = 1.$$

But it is known that [6, 21],

$$\limsup_{r\to\infty}\frac{T(r,f')}{T(r,f)}\leq 2-\theta(\infty)=1.$$

But, as before,

$$\liminf_{r\to\infty}\frac{T(r,f')}{T(r,f)} \geq \sum_{1}^{\infty}\delta(r,a_{j}) + \sum_{1}^{\infty}\mu(r,a_{j}) = 1.$$

Hence $T(r, f') \sim T(r, f)$. Now $n(r, f') \ge n(r, f)$. So for $r \ge r_0$,

$$\frac{T(r,f)}{n(r,f)\Phi(r)} > \frac{(1-\varepsilon)T(r,f')}{n(r,f')\Phi(r)}.$$

Now since ∞ is an e.v. E for f'(z), so the right hand side of the above inequality is positive, hence

$$\liminf_{r\to\infty}\frac{T(r,f)}{n(r,f)\Phi(r)}>0.$$

So ∞ is an e.v. E of f(z).

Theorem 2. If ∞ is an e.v. E for a meromporhic function f(z) and $\sum_{\alpha_i \neq \infty} \delta(\alpha_i) = 1$, then

$$\delta(f^{(k)}, 0) + \delta(f^{(k)}, \infty) = 2$$
 for $k = 1, 2, ...$

PROOF. Since ∞ is an e. v. E,

$$\delta(f, \infty) = 1.$$

But

$$\limsup_{r \to \infty} \frac{T(r, f')}{T(r, f)} \leq 2 - \delta(\infty) - \mu(\infty) = 1.$$

Again

$$\liminf_{r\to\infty}\frac{T(r,f')}{T(r,f)}\geq \sum_{1}^{\infty}\delta(\alpha_{i})+\sum_{1}^{\infty}\mu(\alpha_{i})=1.$$

So $T(r, f') \sim T(r, f)$.

As in Theorem 1, since ∞ is an e.v. E for f'(z), $\delta(f', \infty) = 1$. Again, we have [6, 18],

$$N\left(r, \frac{1}{f'}\right) + \sum_{1}^{q} m(r, a_j) + S(r) \leq T(r, f').$$

So

$$\begin{split} N\left(r,\frac{1}{f'}\right) + m\left(r,\frac{1}{f'}\right) - m\left(r,\frac{1}{f'}\right) + \sum_{1}^{q} m(r,a_j) + S(r) &\leq T(r,f'), \\ &\sum_{1}^{q} m(r,a_j) + S(r) &\leq m\left(r,\frac{1}{f'}\right) + O(1). \end{split}$$

Hence

$$\lim \inf \sum_{i=1}^{q} \frac{m(r, a_i)}{T(r, f')} + \frac{S(r)}{T(r, f')} \leq \delta(f', 0).$$

So

$$\frac{1}{\limsup_{r \to \infty} \frac{T(r, f')}{T(r, f)}} \sum_{1}^{q} \delta(r, a_j) \leq \delta(f', 0).$$

But

$$\limsup_{r \to \infty} \frac{T(r, f')}{T(r, f)} \le 1,$$

and

$$\sum_{1}^{\infty} \delta(r, a_j) = 1.$$

Hence

$$\delta(f', 0) = 1$$
,

SO

$$\delta(f',0) + \delta(f',\infty) = 2.$$

Repeating the argument we get

$$\delta(f^{(k)},0) + \delta(f^{(k)},\infty) = 2.$$

Corollary. If ∞ is an e.v. E for a meromorphic function f(z) and if further $\sum_{i=1}^{\infty} \delta(\alpha_i) = 1$, then ϱ , the order of the function, must be a positive integer.

For an alternative proof of the corollary see S. M. Shah and S. K. Singh [5]. Proof. By theorem 2,

$$\delta(f', 0) = 1$$
, $\delta(f', \infty) = 1$.

Hence

$$\lim_{r \to \infty} \frac{N(r, 1/f') + N(r, f')}{T(r, f')} = 0.$$

Hence the order of f'(z) must be a positive integer, because for non-integral order,

$$\limsup \frac{N(r, a) + N(r, b)}{T(r)} > 0 \text{ for all } a \text{ and } b, \quad (a \neq b),$$

22

see NEVANLINNA [1, 51]. But the order of a meromorphic function is the same as the order of its derivative. This proves the corollary.

Theorem 3. If there is at least one e.v. N for a meromorphic function f(z), then 0 must be an exceptional value of f'(z) in the sense of VALIRON.

PROOF. Suppose, if possibile 0 is a normal value for f'(z) in the sense of Valiron. Then $\Delta(f', 0) = 0$. But, it is known that

$$\Delta(f', 0) \liminf_{r \to \infty} \frac{T(r, f')}{T(r, f)} \ge \sum_{1}^{\infty} \delta(a_i),$$

see [4]. So, $\sum_{i=1}^{\infty} \delta(a_i) = 0$, contradicting the hypothesis that $\delta(a_i) > 0$ for at least one a_i . Hence 0 is an exceptional value of f'(z) in the sense of Value N.

References

- R. NAVANLINNA, Le théorème de Picard Borel et la théorie des functions meromorphes, Paris, 1929.
- [2] S. M. SHAH, On exceptional values of entire functions. Compositio Math. 9 (1951), 227-238.
 [3] S. M. SHAH, Exceptional values of entire and meromorphic functions, Duke Math. J. 19 (1952), 585-594.
- [4] S. M. Shah and S. K. Singh, On the derivatives of a meromorphic function with maximum defect, Math. Z. 65 (1956), 171-174.
- [5] S. M. Shah and S. K. Singh, Meromorphic functions with maximum defect sum, Töhoku Math. J. 11 (1959), 447-452.
- [6] H. WITTICH, Neuere Untersuchungen über ein-deutige analytische Funktionen, Berlin. 1955.

(Received December 10, 1962; in revised form July 10, 1963.)