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On finite groups with three independent generators two of which
being of odd prime order

By K. R. YACOUB (Cairo)

A finite group G may have several independent generators, but it is completely
defined, as an abstract group, by means of any set of abstract generators and all
the independent relations by which they are connected. If the group has just a single
generator, then it is cyclic and the group is completely determined if its order is
given. But if the group G has two independent generators, the determination of G
is no further simple. However, certain permutations (called by the author [1] semi-
special permutations and by DoudGLAs [2] conjugate substitutions) are sufficient
for the determination of G.

Precisely speaking, let G be such a group and let a, b (of orders m, n respectively)
be its independent generators. Then [1], associated with G, there corresponds two
permutations © and ¢ such that

a’'b® = b¥*a*™ ; x€[n], y€[m],

where n is semi-special on [n] and ¢ on [m].
By means of these permutations, the product of any two elements in G can be
casily formed according to the rule

b.\'a_r_“.\-‘ar' = h*+ "X a-,—"‘y+ y’ _

This shows the importance of the role played by the permutations 7 and g in ass-
ociation with the structure of the group G. A detailed study of these permutations,
done recently by the author, helped a lot in the determination of all the groups G
specially when n=p, 2p (Cf. [3]) and also when n=p? (Cf. [4]) where p is an odd
prime number*).

Moreover, if the group G has three independent generators, the structure of
the group is much more complicated. In such cases, the determination of the group
G will be treated in a different manner. However, it is the object of the present pa-
per to make a complete determination of the group G when two of its generators
have equal order p. The way of tackling such a problem depends mainly on the
results already obtained by the author for groups with two independent generators.

*) The symbol p is used throughout this paper to denote an odd prime number,
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§ 1. Description of the problem

We start by collecting some unrelated results for frequent use.

Theorem 1. The general products of two cyclic groups. one of which being of
arder p, are

G,=1{a,b:a"=br=e,ab=ba", r"=1 (mod m)}
Gy=la.b:a"=b"=e¢,ab=b"a, uz1 (mod p), u" =1 (mod p))}.

Theorem 2. No group of the type G, is isomorphic to a group of the type G,.
For the proofs of Theorems 1 and 2, the reader may be referred to [3] or to [35].

Theorem 3. Every group of order p* is Abelian.

Returning now to our problem, let G be a finite group with three independent
generators namely a, b, ¢ and suppose that m is the order of @ while b and ¢ are
of order p. Then a" =b"=c? =e.

Moreover, the subgroup {a. b}, being a general product, of {a} and {b} must
be either of the type G, or of the type G,. Similarly for the subgroup {a. ¢}, thus
four cases have to be considered seperately namely:

(1) the subgroups {a, b} and {a, ¢} are both of the type G,, in this case the
associated group G, if it does exist, is said to be of the type 7(I. I).

(2) the subgroup {a. b} is of the type G, but {a, ¢} is of the type G, and the
associated group G, if it exists, is said to be of the type 7(1, 2).

(3) the subgroup {a, b} is of the type G, but {a, c}is of the type G, and the
associated group, if it exists, is said to be of the type T(2, 1).

(4) the subgroups {a, b} and {a, ¢} are both of the type G,, and the associated
group G is said to be of the type 7(2, 2).

It may be remarked that the existence of groups of the type 7°(l, 2) implies
directly the existence of groups of the type 7(2, 1). Moreover, the interchange of
the generators b and ¢ in groups of the type T(2, 1) leads at once to groups of the
type 7(1, 2). Accordingly, we shall deal only with groups of the types 7(1, 1), 7(1, 2)
and 7(2, 2). Our aims are to describe all groups in terms of some simple parameters
and then prove the existence of such groups for permissible parameter values.

§ 2. Groups of the type 7°(1, 1)
Theorem 4. If there is a group G of the type T(1, 1), then it has the defining relations
(1) G={a,b,c;a"=b?=cP=e, ab=ba', ac= ca*, bc = cb}
where
(2) r? =1 (mod m), s”=1 (mod m).

Conversely if r and s are any numbers satisfying (2), then the group G genera-
ted by a. b and ¢ with the defining relations (1) is of the desired type.

D3
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PROOF. Assume the existence of the group G. Then since {a, b} and {a, ¢}
are both of the type G, their defining relations may be written as

\a, by=a"=br=e,ab=ba", r’ =1 (mod m),
la.cj=a"=cP=e,ac=ca*, s =1 (mod m).

Moreover {b, ¢} being of order p? is Abelian and therefore be = cb. Thus we have
shown that (1) and (2) are necessary.

For the converse, let H be the system of all formal triples [x, y, z] where
x=0,1,2,....m—1, y,z=0.1,2, ..., p— 1. In this system we define multiplication
by means of the formulae

[x, », 2)¥', ¥', 2] = [x", y", 2]
where
x" = psPx+x" (mod m),

¥ =y+y (modp),
and
" = z+4 2" (mod p).
The multiplication defined above is associative, for
[x, y, Z[x', ¥, ZUx", »", 21} = [%, 3, 2WP 55X + %7, Yy +y", 2’ + 2") =

=[x+ ST X v+ Y Y 242+ 2]
and

{lx, 9, 2%, ', ZB[x", y", 2" = [P’ s* x+ X', y+ ¥, z+ 2 Yx", ", 2"] =
=[P (s x+X)+x" y+y +y, 2+ +2").

Also [0, 0, 0] is the unit element for this multiplication and [—rP=2s?~*x, p—y, p—1z]
is the inverse of [x, y, z]. Therefore H is a group. Moreover, if

a=[,00], ¥=[0,1,0, ¢=[001)
then it is easy to show that
a*=[x,0,0}, b7=[0,y,0], ¢==[0,0, z].

Thus

a"=h"=c'P=¢,
Also

a'b'=[1,0,0]0,1,0]=[r, 1, 0],

b'ar=[0,1,0][,0,0]=[r. 1, 0],
therefore

ab'=ba".
Similarly

ac =|[1,0,0][0,0,1]=s, 0, 1],
and

c’a*=|[0,0, 1][s, 0, 0] =[s, O, 1],
hence

ac=cd”.
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Finally

e'=[0,1,0110,0, 11=]0. 1,1}
and

¢'b’=[0,0, 1][0, 1, 0] =[O0, 1, 1].

Thus corresponding to the defining relations of G
an=pr=c't=e, adb'=ba", dc'=ca* bc=cl.

From this we see that H is a homomorphic image of G. But as the order of H is
p*m and the order of G is at most p?m, they have the same order and are isomorphic.

§ 3. Groups of the type 7(1, 2)

Theorem 5. If there is a group G of the type T(1. 2). then it has the defining relations
(3) G = {abc; a°=b=c=¢, ab=ba’, ac=c"a, bc=cb}
with u = 2,3, ..., p—1 where
(4) klm, k|i(r—1), r*=1 (mod m)

k being the order of u modulo p.
Conversely, if m and r satisfy (4), then the group G generated by a, b and ¢ with
the defining relations (3) is of the desired type.

PROOF. Assume the existence of the group G. Then since {a, b} is of the type
G, and {a, ¢} is of the type G,, their defining relations may be written as

{a, b} =a™=bP=e, ab=ba’, r?=1 (mod m).
la, e} =a" =cP=e, ac=c'a, u" =1 (mod p),

but as k is the order of ¥ modulo p, it follows that m is a multiple of k. Moreover
{b, ¢} being of order p? is Abelian and therefore be = cb. Furthermore, by the asso-
ciative law in G. a(bc)=(ab)c. But

a(bc) =a(cb) =(ac)b = ¢'ab = c*ba" = bcva’,
and
(ab)c =ba"c =bc*a,

therefore ¥ =u (mod p), and hence k divides (r —1). Thus we have shown that (3)
and (4) are necessary.

For the converse, let // be the system of all formal triples [x, y, z] where
x=0,12,...m—1, y,z=0,1,2, ..., p—1. In this system, we define multipli-
cation by means of the formulae

[x, 2%, ¥, 21=[x", y", 2],
where

”

x” =rx+x (mod m), =y+)y (modp), and z” = :z+u*z’ (modp).
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The multiplication defined above is associative, for
[x, y, 2{[x", ¥, ZUx", »", 2} = e,y 2Zfr" X' + %7, Yy +y", 2 +ur 2") =

=[x+ +x" y+¥Y +y 2w (@ +ut )
and

([, 3, 21, ¥, T 35 2] = [P x4+ p 40 24w, 3 2] =
=[P x+xX)+x", y+y +y, 24w+ 7 2"] =
=[x+ x +x" y+y + )y 2w w2

since ™ =wu (mod p) in virtue of k|(r—1).
Therefore

[x, y, 2%, ¥, Z)x7, »", 21} = {[x, », 20X, ', 2} [X7, 7, 27).

Also [0, 0, 0] is the unit element for this multiplication and [—r?~*x, p—y, —u"~*z]
is the inverse element of [x, y, z]. Therefore the system H is a group.
Moreover, if
a=[1,0,0] »=[0,1,0], ¢=[0,0,1]

then it is easy to show that

a’*=[x,0,0}, b7=[0,y,0}, ¢*=]0,0,z].
Thus

ar=hr=cr=¢,
Also
ab’=[1,0,0][0,1,0]=[r, 1,0], and b'a"=[0,1,0][r,0,0]=[r, 1, 0]
therefore
ab'=ba".
Moreover

a'c¢’=[1,0,0][0,0,1]=[1,0,u], and ™ a’=]0,0, u][1, 0, 0] =[1, 0, u],

hence
ac=c"a'.
Furthermore

be'=[0,1,0)0,0,1]=[0, 1, 1], and ¢ =[0,0, 1]{0, 1,0]=[0, 1, 1]

therefore
b'e’'=c'b.

Thus corresponding to the defining relations of G
gdh=br=rr=¢, db=bda", de'=c"d, bd=cV,

From this, we see that / is a homomorphic image of G. But as the order of H is
p*m and the order of G is at most p?m, they have the same order and are isomor-
phic. This completes the proof of the theorem.
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§ 4. Groups of the type 7(2, 2)

Theorem 6. If there is a group G of the type T(2, 2), then it has the defining relations

={a, b, c; A*=bP=c?=e¢, ab=>b"a, ac=c"a, bc=cbh}

(5) G
with u,v = 2,3, ..., p—1 where

(6) km, k'|m,

k and k" being the respective orders of u and v modulo p.
Conversely, if m satisfy (6), then the group G generated by a, b and ¢ with the
defining relations (5) is of the desired type.

Proor. Assume the existence of the group G. Then, since {a, b} and {a, ¢} are
both of the type G,, their defining relations may be written as

{a, b} =a"=br=e, ab=b'a, u" =1 (mod p),
{a,c}=a"=cP=e, ac=c'a, v"=1 (modp).

But as k and k" are the respective orders of # and v modulo p. it follows that m is a
multiple of both k and k.

Moreover, {b, ¢}, being of order p?, is Abelian and therefore hc = ch. Thus we
have shown that (5) and (6) are necessary.

For the converse, we call again the system H of all formal triples [x, v, z]
where multiplication is here defined by means of the formulae

%5 2X: 7, 21=x".y, 2]
where

- e

xX"=x+x"(modm), y" =y+u*y (modp), and z" = z+0v*z" (mod p).
Following the same pattern of proof as in Theorem 4 and 5, we can easily show that
this multiplication is associative. Also [0,0,0] is the unit element and [m— x,

—u"~*y, —v™-*z] is the inverse of [x, y, z]. Therefore the system H is a group.
Moreover, if a'=[1,0,0], '=[0, I, 0] and ¢ =[0, 0, 1], then it is easy to show that

aam = brp — {\"P =@, arhf = br"aa’ al"..l = ("I"a‘. b’f“ - (Ifhf‘

Thus H is a homomorphic image of G. But as the order of H is p?m and the order
of G is at most p?m, they have the same order and are isomorphic.

§ 5. Conclusion

The preceding arguments show that finite groups with three independent gene-
rators two of which being of order p exist. the structure of such groups is described
in Theorems 4,5 and 6. Among these groups, that one described in Theorem 4 with
r=1 (modm), s=1 (modm) namely {a,b,c;a"=>b"=cr=e,ab=ba, ac=ca,
be = cb} this group provides the direct product of {a}, {b} and {c} which is Abelian.
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