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On Ogawa’s Criterion For Univalence*

By MAXWELL O. READE (Ann Arbor., Mich.)

1. Introduction

In a recent note, OGawa obtained the following result ([2], p. 8).

Theorem 1. Ler f(z) = = fa,,:" be analytic for z'=1, with f(z) =0 there,

let q (1) denote a single-valued real function, sufficiently smooth for all t. and let k
denote a real constant. If the inequality

0
(hH j d[arg[e? [ (e®)+ kg (f(e®)]= —m, =z=re",
holds for all 0, =0,, then f(z) is univalent for |z) =1.

OGAwA then applied Theorem 1 to the special cases (i) ¢ (f(z))=3(f(z)) and
(ii) ¢ (f(-:))zargf(:) to obtain various sufficient conditions for the univalence
(or p-valence) of analytic functions f(z) [3].

In this note we obtain certain representations of functions f(z) satisfying an
mequality of the form (1) for the two elementary cases alluded to above. These
representations yield some results which are modest extensions of OGAWA’s original
results: they also raise other questions, answers to which should prove interesting.

2. Principal Results

Most of the results of this note depend upon the following lemma which is a
simple extension of one due to KapLax ([1], p. 174).

Lemma. Ler p(0) denote a real-valued function that is of bounded variation for
0=0=2n, and let p(0) satisfvy

2) j dp(0) = 2n(k + 1),
n
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where k is a real constant, and

LE
(3) / dp(0) = —m,
#
Jor all 0, =0,. Then there exists a real-valued non-decreasing function q(0) such that
(4) [ dg(®) = 270k +1)
0
and
(5) p(O)—q(0)] = ;
hold. Moreover, if P(r,0) and Q(r, ) denote the functions
P(r.0) : /#[1 o - [p(x)—(k + 1)x]dx, =z=re*
0 =2n ] #li—zew) Adz, == re”,
1]
(6] 2=
O(r, 0) = : /.#[I_;:e gl ¥ (2) — (k + 1)a] dx, == re®
“"'_211_ { 5 lg (K aljadx, z=rev’,
L]

harmonic for r <1, and if F(z) and G(z) are analytic (not necessarily single-valued)
Sfunctions satisfyving
P(r,0)=argF(z), |F@O)|=1, argl=0,

@ O(r,0)=argG(z), GO) =1, argl=0,
then
(8) x|‘-F-(-—% =0
and
‘A_ * A+1G ()] =
9 P arg[z**1G(2)] =0

hold for 0 z| = 1.

PrOOF. A proof of this lemma is contained, for all practical purposes, in
KAPLAN's note ([1], p. 174), hence we shall omit the details. However, we do note
that the condition (9) is the usual one that guarantees that w = z**'G(z) maps each
circle |z| =r onto a curve that is (spiral and) star-like with respect to w=0; if k is
a nonnegative integer, then the image of each circle |z| =r under w=z¢*1G(2) is
a closed (and star-like) curve,

We now apply our lemma.

£

Theorem 2. Let f(z) = z-+ > a,2" be analytic for |z|=1 with f(z)#0 and

n-;Z

f(2)/z 20 there, and let m denote a real constant. Then f(z) satisfies the inequality

(10) [ [ + & gr(_wj mef'(e)| db —~ —
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for all 0, =0, if and only if there exists a close-to-convex function H(z) = z+ > b,2",
univalent for 'z\ <=1, such that .

. emfi) |
(11) H(z) = - ; mH(z)+1#0.

Proor. We first suppose that there exists some real m such that f(z) satisfies
(10) for all 0, <0,. We apply the Lemma, with p(0) =arg [¢/"(e’®)e"/ "), with
k =0, to obtain the functions F(z) and G(z) satisfying (8) and (9). But here it is
clear that F(z)=/"(z)e™®, so that (9) becomes

/ '(=Jr‘-"”“_“] =
(12) # G o) = 0.

Since G (z) satisfies (9) with k =0, we conclude that zG(z) is a starlike and univalent
function for z| =1, Hence there exists a convex and univalent function @(z), with
@(0)=0, @(0) =1 such that

% j-f(:“,mfl:} ] -

()
holds for |z) = I: this implies that "/ is univalent and close-to-convex for |z| =1
([1), p. 169). One part of the theorem now follows.
The remaining part of the theorem is now a matter of verifying the inequality
for a function of the form (11).

Remark 1. If for some real m. f(z) satisfies (10). for all 0, =0,, it follows that
H(z) in (11) is univalent. Therefore f(z), is univalent too. This is one of OGAWA’s
results ([2], p. 9).

Remark 2. If f(z) satisfies (10), then the m cannot be arbitrary. For, since H(z)
is a univalent function that does not take on the value —"Ii, it follows from the
1+ theorem that |m|=4. Indeed, if H(z) is univalent, and if m is chosen so that
mH(z)+1#0, for |z| =1, then f(z) defined by (11) is univalent too; one uses the
close-to-convex property of H(z) in order to establish (10).

Theorem 3. Let f(z) = z+ > a,2" be analytic for |zl=1 with f(z)=0 and
f(2)z#=0 there. and let m denote a real constant. Then
f(2) o b
(13) RN +z—+mzf(2)|=0
1)
holds for z =1 if and only if f(z) is univalent for |z| <1 and has the representation
1
(14) Fay = Z log (1 +m®(z)), 1+ md(z)=0,
where ®(z) = = *_‘f c,2" is a (normalized) univalent convex function.

ne=2
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PrOOF. Suppose that (13) holds for |z| = 1. Then the standard procedure relative
to positive harmonic functions yields the HERGLOTZ representation

2=

| oL iy L [z
(13) 14 z2— ) ~mizf(z) = e e dufx)

where p(x) is non-decreasing and satisfies

(16) fd,u =2
0

From (15) and (16) we obtain. after several simple operations,
(17) e — | = md(z),
where

e -
- - - J logil «=ze~ "ypu{x)

"

(18) o(z)= [e 7 d-.
4]

It is well-known that @(z) in (18) is a (normalized) convex function univalent for
|z| = 1. It now follows that f(z) is also univalent.

The converse can be readily verified by several simple computations.

Remark 3. OGaAwA showed that (13) implies f(z) is not only univalent, but also
convex in the direction of the imaginary axis ([2]. p. 9). This last property of f(z)
follows easily from the representation (17): all one must do is study the variation
of arg f(2).

Theorem 4. Ler f(z) = = - _% a,z" be analytic for |z| =1, with f(z2)#0 and

n=2
f(2)/z#0 there, and let m denote a real constani. Then a necessary and sufficient
condition that

[
P . ,f ( ““l 9 f“()“’;
fiy
hold for all 0, < 0, is that there exist a function G(z). analytic for = = 1. with G(0)=0

and 'G'(0) =1, for which (9) (with m=k) and

& L|reuer)

-m G ( )
hold.

PROOF. Suppose that (19) holds for all 0, = ,, for some real m. Then we apply
our lemma, with p(0)=arg | f"(e®)[f(e")/e®]"]. m =k, to obtain the proper G(z)

and F@) =LY such that (9), (8) — and hence (20) — hold.
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As for the other part of the theorem, it is a simple matter to verify the result.
Indeed, this last is one of OGAwA’s particular results ([3], pp. 432—436).

Remark 4. OGAwA managed to show that (19) implies that f(z) is univalent;
this we have not been able to do by the methods of the present note.

Remark 5. Again, the constant m is not arbitrary: it must at least satisfy the

inequality m = —1%.
3. Concluding Remarks

The classes of functions introduced by OGAwA have special properties that
should be investigated: distortion inequalities, coefficient inequalities geometric
properties, etc. It would also be of interest to determine the complete range of
permissible values for the constant m that intervenes. It would be of interest to
determine the radius of star-likeness, the radius of convexity, and the radius of *‘close-
to-convexity” for the members of the various classes discussed in this note. Finally,
it would be of some interest to determine whether or not each function f(z) that is
convex in the direction of the imaginary axis has a representation analogous to
(17), and thus obtain some of UMezAwA’s results [4].
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