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The extended Hermite — Fejér interpolation formula with
application to the theory of generalized almost-step parabolas

By PAUL SZASZ (Budapest)

Introduction
Let
(1) B Snicont,

be n+ m distinct points on the real axis, and let us denote. correspondingly. by

(2) Yir¥as oo Yt NusM2s oo tim
arbitrary real values, further let for the first # points the corresponding real numbers
(3) Y13 V15 oo Vs

be prescribed as derivative values or slopes. The extended Hermite— Fejér inter-
polation formula (as 1 wish to call it) yields a polynomial S(x) of degree 2n +m — 1
at most with the property

(4) Stxd=, S)=in FTix)=% (=1 2 it o=l 2o )i
As well-known from the theory of interpolation due to CH. HERMITE'), this polyno-

mial exists always and is unique. We shall find below (§ 1) for it the explicit form
(24**). But for this purpose we shall not make use of the general theory.

In particular in the case y; = ... = y, =0 the polynomial ¢(x) of degree 2n +m — 1
at most with the property
(5) g(x,)=y,, qC)=m, ¢q (x,)=0 (v=1,2 s 0% =1,2, ....;m)

will be called extended step parabola belonging to the fundamental points under (1)
and the ordinates (2). This notion is similar to that of the step parabola due to

L. Fesér?). Conversely, in the case y; =... =y, =0, n, =... =n,, =0 the polynomial
Q(x) of degree 2n +m — 1 at most for which
(6) 00c)=0, Q&)=0, OIx)=y, al) cont k=2 oo

holds, will be named extended wave parabola determined by the fundamental points
(1) and the slopes (3), corresponding to the notion of wave parabola introduced
by L. FeJfr.?) In general the above polynomial S(x) of degree 2n+m — 1 at most

') See [5]. 70 or 432, respectively.
) See [2], 210; further [3]. 66.
Y) See [4], 714.
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characterized by the relations under (4) will be called generalized extended step
parabola belonging to the fundamental points (1) and the ordinates and slopes
under (2), (3) respectively.

In the case m=2,{,=1,¢, = —1 the extended Hermite—Fejér interpolation
is identical with the quasi-Hermite — Fejér one introduced by the author.#) P. TURANS)
proposed that the case m =1, £ =1 be investigated also. In §§ 2, 3 of the present
paper we deal with this case.

In the just mentioned case m =1, £ =1 we shall speak of almost Hermite— Fejér
interpolation formula. 1t yields the unique polynomial S(x) of degree 2n at most
with the property

(7 Sx)=y,. S(D=n. Sx)=y; (v=12,...n).

In particular in the case yi{ =... =y, =0 the polynomial S(x) of degree 2n at
most characterized by (7) will be called the almost-step parabola, while in the case
¥y =...=y,=0,n=0 it will be named the almost-wave parabola. determined beside
the points

(8) Riio Xpsviva Xas 1
in the first case by the ordinates
{9) YisVa,oos Vs Il

and in the second by the slopes (3). In general it will be called the generalized almost-
step parabola belonging to the fundamental points (8) and the corresponding ordinates
and slopes (9), (3) respectively.

Our Theorem I below (§ 2) states the uniform convergence of the generalized
almost-step parabola to the function f(x) continuous in the closed interval —~1=x=1,
in the case when the fundamental points are beside 1 the zeros of the Jacobi poly-
nomial P '*)(x) with the notation of G. SzeG6°) and the ordinates the correspond-
ing values of f(x), provided that the slopes are uniformly bounded if n - + ==, Theorem
IT (§ 3) contains a similar statement for the case of the roots of the Legendre polyno-
mial P,(x), the convergence however, is then assured only in the interval —1 =x=1
open from below, and uniform in each subinterval —1+4+d=x=1 (0=6=2).

§ 1. The extended Hermite— Fejér interpolation formula

Using the fundamental points under (1) let us introduce the following nota-
tions:

(10) o(x) = C(x—x)(x—x3)...(x—x,), C#0
and
(1) Q) = K(x—&)(x—=&)...(x=¢&,). K0

4) P. Szasz, [7], 414.
%) Oral communication for which I am thankful to P, TuraAx,
) See [8], 58.
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further

T . S s
(12) !"(x)_?)'(x‘.)(x—.\‘,) ("—1, 2’ eay n)
and

SR Q(x) >
(13) L=gmya—gy  * =12 ..m.
Then we define

; Q(x) =
(14) ¥ ()= e ')[l e, (x—x ), (x)? (v=1,2, ....n)
and
)

(15) o (x)= 9%&1))2 L,(x) (k=L ks )
where
(16) ol E’—:-—] @ (%) (v=L2 ....m)

to be the fundamental polynomials of the first kind, and

(17) 5"("')“92('(_))( x JI(x)* =12 ii,n

to be those of the second kind. With regard to (10), (11), (12), (13) it follows by (14),
(15). (16), (17) at once

(18) rdx) =1 r(x)=0 (p#v), r(&) =0
(V=2 .o k=12 .., )

and
(19) FelXa) =0 6 12 B SRR ) )
further
(20) o) =1, o) =0 (I#k), ou(x,)=0
(k. I'=1 2, s omsvs=12 o)
and
(21) or(xy)=0 (=10 v it B % i)
while
(22) 5(x,) =0, 5/(5)=0
(v.u=12 ...n; k=142, ..,m)
and
(23) 5 (x)=1, 55 {x)=0 (L=Y) u=12 .... N).

By reason of the relations (18)—(23), if the arbitrary real values under (2) and (3)
are prescribed corresponding to the fundamental points (1), the polynomial

(24) S(x)= _S I(X)+ 2 mee(x) + bi:v_.l-'yrfsv(-")

-
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of degree 2n + m — 1 at most has obviously the property (4). Moreover this polyno-
mial S(x) is unique. Indeed, S$*(x) being a polynomial of degree 2n + m — 1 at most
and with the same property, i.e.

S*(x)=y., S* () =1, S* (%)=): (V=12 oz Jemel  Driom),

for the polynomial
p(x) = §%(x) = S(x)

of degree 2n+m—1 at most there holds
p(x,)=0, p()=0, p'(x,)=0
(p=L 2 .c.nide=LE2 ..om)
and consequently for all x
plx) = 5*(x)— 85(x) = 0,

thus S*(x) is identical with S(x).

As we see, the unique polynomial S(x) of degree 2n + m — 1 at most with the
property (4) is given by (24). Therefore (24) presents the generalized extended step
parabola defined in the introduction. In particular the extended step parabola g(x)
characterized by (5) is given by

(25) q(x)= 2‘: yvr..(-\')fk‘_'/f,; i 04 (X)
while the extended wave parabola Q(x) determined by (6) is
(26) Q(x)= -21 ey (X).

Thus, (24) can be written in the abbreviated form
(24%) S(x) = g(x)+ 0(x).

With respect to (12). (13), (14), (15) we obtain by (25) for ¢(x) the explicit
form

2

: e SN Bslee. ol __‘_m(.\‘) .
(25%) qr(x)—v%l Py a(x.) [1+e.(x—x) e CRTEEERY

- Q(x)* Q(x)
+ 2> - —
S eEY TE(-E)

where w(x), 2(x) and ¢, are given by (10), (11) and (16). Further, with regard to
(12) and (17), Q(x) can be written by reason of (26) in the detailed form

3

& . (x)
x LR R I
(26%) Q{.\)_‘_,_] Py Q)

- w(x)
wx)x—=x)]"

(x—x,)
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Consequently, the generalized extended step parabola given by (24*) has the explicit
form

i R ) o® |
e I Al TR "“"{m'(.ni(.r-- m] ¥
L E o Q) 2. 000 ' o) |
S o @G-8 A a0 T W ) —x)

where @(x), 2(x) and ¢, are given again by (10), (11), (16). (24) or (24**) is the
extended Hermite— Fejéer interpolation formula as we have named it in the intro-
duction.

In particular, in the case m=1, {=1 we can take Q(x) = 1—x, and with
respect to (12) by (24**) we get

" i ( )2

@ SW=Z g el ) hO9 g +
m < ] - .
J k‘_z.; Vv I o X — '\\'}!r("'—)
where
(28) or= : Hree (¥=1, 2 ...;’n).

l—x. of(x)

This is the almost-Hermite — Fejér interpolation formula which yields the generalizeda
almost-step parabola as we have called it in the introduction.
From the unicity of this generalized almost-step parabola given by (27) it

follows that for each polvnomial IT(x) of degree 2n at most

w(x)?
w(1)?

1(x)= ZH(\) [l+(*(\—\)]!(\) +11(1) T

+ 2' I (x, )(\ x )1, (x)?
holds. This gives for [1(x)=1 the identity

(29) z '_“‘ )

*
[+ el (= x)I (0)? + S =

fundamental in our following treatment; let it be called the fundamental identity.
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§ 2. The generalized almost-step parabola corresponding
to the zeros of the Jacobi polynomial P\~ *(x). Weierstrass
approximation by means of the same

Disregarding a constant factor the Jacobi polynomial P~ *'(x)is identical
with7)

sin (2n+1) —;’
(30) o(x)= b Jumn
sin

It has the zeros

a1 g 2vm

‘vn — COS 2ﬂ—+'_l (v= 1.2, o, )

To produce the fundamental polynomials of the first and the second kind in
the case when m=1,¢ =1 and the fundamental points beside 1 are those under
(31). we start from the well-known differential equation

(32) (1 = xHw"(x) (1 +2X) ' (x) + n(n + Dw(x) = 0.
Applving this for the root x,, of w(x), we obtain (setting x, instead of x,,)

o"(x,) 1+2x,
o'(x,)  1—x2

consequently the coefficient ¢; under (28) is

1 1+2x, oy
Tl-x, 1-x2 1—x2
and so we get
" ] —-x.x
(33) 1+ (x—x,)= 1—x2 (=120

Thus, by taking Q(x) = 1 —x, the fundamental polynomials of the first kind given
by (14) and (15) are

=X 1=%% ;. .4 o
" r\_(.\)—- _l-—-__;". et f‘,{.\} (y= 12 i ),
(34) i ({J_(.t‘)z
e BT (L

while those of the second kind under (17) are

(35 s,(x)= Il::(\ —x,)1,(x)? =2 e 1)

Ay

) G. SzeGo, [8]. 60, form. (4. 1. 8.).
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As we see, in this case of the zeros of the Jacobi polynomial (30) the fundamental
polynomials of the first kind under (34) are all non-negative in the interval —1=x=1,
This fact has a fundamental importance in the following treatment.

With respect to (34) and (35) in the present case the almost-step parabola
(25) and the almost-wave parabola (26) are

J= §p 1=X 1% 2 w(x)?
(36) q*(‘\) — r‘;: )’v l = '\-\- l— xf !v(x) +q 0)(1)2
and
S e
(37) 0* ()= 2 ¥ 1 =X)L,

respectively, while the generalized almost-step parabola according to (24*) has
the abbreviated form

(38) S(x)=g*(x)+ 0* (x).
Now, in what follows we need the following
Lemma 1. For the zeros under (31) of the polynomial (30) we have

3 i -
(39) N (N (A T i e e

For the proof we start from the identity

sin g w(cos #)=sin (2n+ 1) g .
By deriving we get

cos -g- w(cos #)—2sin g sin # w’(cos #)=(2n +1)cos (2n+1) g .

Putting here x-==cos #/, for the root x,, of w(x) there results
2n+1

(40) @'(x,)=(—1)"+1 —

2 sin s

VT I
PN hand PR

Since with respect to (31)

: 17,4 . 2vn
1—x,=2sin? — — X% =s§in? ——>
b vn 2n-+1

by the aid of (40) follows (39), Lemma I is proved.
Next, Weierstrass approximation is expressed by the following®)

Theorem 1. Let f(x) be a continuous function in the closed interval -1 =x=1.

) First exposed in my lecture ., Kiildnbdzd tipusu lépesdparaboldkrol’™ (in Hungarian) on the
6th April 1962 in Debrecen (Hungary), later in the lecture of mine “On generalized quasi-step and
almost-step parabolas. respectively** delivered on the 18th August, at the International Congress of
Mathematicians Stockholm 1962,
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Furthermore let beside | the zeros under (31) of the Jacobi polynomial Pt (x)
be chosen as fundamental points, and let the arbitrary given numbers
Yios Vs sz Vs (n=1,2.3,..)
be taken for slopes, provided that
(41) Yl =4

where A is independent of n and v. Then for the generalized almost-step parabola
S.(x) of degree 2n at most belonging to f(x), i. e. with the property

Sa(Xm) =f(x0)s Sa(D)=f(1), Sy(Xyn)=yin (v=12, ....,n; n=1,2,3, ...)

holds
Si(x) = f(x) if n -+

the convergence being uniform in the whole closed interval.

ProOOF. We prove first of all that the almost-step parabola ¢;(x) of degree 2n
at most corresponding to f(x), that is according to (36)

OUOIE. RN L A @, (x)?
(42) q"(,\)_v% i bl l'_—x‘m =t lia(X)? +/(1) mn(l)z

where ,(x) is identical with the polynomial w(x) under (30), and by (12)

w (,\)

(0 (\‘ﬂ')(\ \‘5"

(43) L=

converges uniformly to f(x) if n — + =,
With regard to (33), in the present case the fundamental identity (29) has the
form
"ol—x l — Xy w (x)
e v . B .=
() N PRV "( X) + ®, "o (1)?

v i

Consequently it may be written

" " 2
(45) f@= 2 ) = ,__"" ()2 + fx) 2 }‘; -
and by (42), (45) there follows

; . " I—x 1-
46) S04 (9= S~ fel {2 5092+ () ) 2B
v=1 — ‘vn .m J(')
But
, ) {\)2
LG =)ty =0

uniformly for — I =x=1. This is an easy consequence of the fact that the first
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factor [...] vanishes for x =1 and is continuous for —1=x=1, while with regard
to (30)

: i
i . o M
w,(1) 2n+1 ol i
2 X=cos

-0

uniformly in each subinterval ~l1=x=1-6¢ (0=0<=2) and is bounded in the
whole closed interval since as well-known

L fl
L sin(2n+1)

n #
S1 P

=2n+1.

Therefore (46) implies the uniform convergence of g.(x) to f(x) if one shows that

l =Xy X

n . I 2 ’
- SO Tox, Toxz ) =0

uniformly for —1=x=1. This may be seen as follows.
By reason of the theorem of Weierstrass let for —1=x=1 be

(48) ()] = M.

The positive number ¢ having been chosen as small as we please, there exists a positive
number ¢ such that

(49) LA —f(x")] = ¢ when |x'—x"| =,

the continuous function f(x) being. as well-known, also uniformly continuous for
—1=x=1. Owing to the non-negativity of the fundamental polynomiuls under
(34), by the aid of (44), (49) we have for a fixed x in the interval — 1 =x=1

1 ; l—-x ]_"Nl" I -
(50) D s i
Xyn=X| =0 — Avm - Ayn |
g o ok R S 1. (x)*=s.

— 2
| Xyn—x|=4d - X 1 — X

On the other hand, in view of (48), (43) and the obvious inequality 0 =1 — x,,x =2
we have

_ ' l-x 1—x,x '
5 LR | o T )2 =

(51) e 2 BUOR(ES) e T Ln(x) "
_4M N (1 = X)@,(x)*

= _2 - ’ =7 5 "
0% e3> (1=x,,)(1 —x2) o] (x,,)?
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However, with regard to (30) it is clear that

(52) 0=(l—x)a(x))=2 for —1=x=1.

Hence by the aid of (51) and of Lemma I under (39) there follows that
| i 1— 8sM 2

5 A [f(x}-—fl\w.)] ()= i

= A T 1Ny = =¢
l[‘t""_x|> vn 1",, 6 (2n+ 1)2

if n is large enough, i. ¢. n =N, say. Now, by (50) and (53) we have for —1=x=1

=% 1= r,,,,x

Z [f( ‘) f(xm)] TN \n(x)z

— X 1-22,

when n=N, i.e. (47) is valid. Thus, the uniform convergence of the almost-step
parabola (42) to f(x) is established.
The generalized almost-step parabola S,(x) being by (37) and (38)

Sa(x)=qa (x)+ 2 Ym—— 1 (x Xyn) lon(X)2,

for the proof of the present theorem there remains still to show that

Z y"ﬂ Az - (x “)f“(x)z—vﬂ

uniformly for —1=x=1 if n —~ + . But by the assumption (41) we have

n

(r—x,,,)f,,,(x)z 542 1
1

vn y= — Aynm

n , l .,
Zl e 1X = Xyl Lon (X)2.

Hence, for our purpose it is sufficient to show that

" l—x

(54) 2

vl 1—

ix xﬂli"ﬂl(r) _hO

uniformly for —1=x=1.
First, the identity (44) impljes

(55) z‘

=% I8ty b,

Xem 1—x0

However, by the obvious inequalities

O<l+x,<2, 0<l-x,<2

l-xwx] _ 1 1 [l=x,x A |
It by YEX 27 et basy e @&

consequently

one has

=Xk b b imxa],

2
1—x,,
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and so by reason of (55) we have

B [
(56) zﬁf.,,(x)zgz (—1=x=1)
v=1 27 Ayp
in view to the non-negativity of the terms. Now, let an arbitrary positive number
¢ be given. Owing to the inequality (56) we have for a fixed x

g - ks
(5?) .Z ‘_ |x_xvn|zw|(x)2§£ .2; : . ¥ !‘.,,(x)z‘éZS.
|Xun—x]|=¢ l — uvn |un=x|=¢ l = Ayn

On the other hand, in view of (43), (52) and the obvious inequality 0 <1 —x2 <1,
by Lemma I under (39) there follows

- l —K A8 l
2 — Xyn le 2=2 _>, = -
;x.-.l—‘_'x[ > 1= Xyn 1= Xonl () |Xyn=x|>¢ (1—x,,)0, (xwu)zfx = Xl
,2 J . S 1 {3 “E___
e =3l (1= Xy (1= xp)op(x,)? & @nt 1)
Consequently,
-1 l =
€9 S e e Xulba()<s
[Xyn=x|>e 1= Ay

when »n is large enough, i.e. n= N’, say. Combining (57) and (58) we obtain for
-1=x=1

[x—=x,ll.(x)2<3¢ if only n=N

2

which expresses just the validity of (54), thus completing the proof of the theorem.

l—x
— Xyn

§ 3. Weierstrass approximation in each subinterval
—14+d=x=1 (1=0<2) by means of the generalized almost-step
parabola belonging to the zeros of the Legendre polynomial P,(x)

The Legendre polynomial w(x)=P,(x) of degree n (exactly) satisfies the diffe-
rential equation
(1—-xH)o"(x) —2xo'(x)+nr+1Do(x) = 0;
for the zeros

(59 Xins X2ps voes Xpn

of the same we have (setting x, instead of x,,)
o’(x,) _ 2x,
o'(x,) 1-—x2

=1, 2, .., 0

Consequently, in the present case for the coefficient ¢ by (28) results

ST SR T
- Ty Yyt 14%,

-

Cy
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and so we obtain
l T &
L ¥ PR o e g 9
(60) 1+cy(x—x,) S (v=1, 2, .5 1)
Thus. with respect to P, (1) =1, the fundamental polynomials of the first kind under
(14) and (15) are [taking Q(x) = | —x again)
=X 1= P.(%) 2
At I—\ 'l_+\ ” a5 (P,:(.\_':')_(;—\)'l
(61) (v=1,2. ...J:_).

2(x)= P,(x)%,
while those of the second kind given by (17) are

P, (x) ]2
(x,)(x —x

] —x R Gl T
(62) s.(x)= I-:;v[.\ —x ), (x)?= i \.r(.\ .\,)l %

1§k P RIS |

As we see, also in this case w(x)=Pyx) the fundamental polynomials of the
first kind are all non-negative in the interval — 1= x = 1. This fact is again of funda-
mental importance in what follows.

With regard to (61), in the present case the fundamental identity (29) has the
form

b
13 = P (%) (x—

vl

n .- .2 P ) 2
- _Z l “) _] +P,,(.\')2 =
1—x x,)
already discovered by E. EGERVARY and P. TURAN?) but in another way.

By the aid of (61) and (62) the almost-step parabola (25%) and the almost-wave
parabola (26*) have at present the forms

_ s 1=t P,(x) >

¥ - — v b - 2
(64) §TR= 2 P pr. [P (x)(x—x,) TP
and

N Py (x)
R N, VN g v o

(65) 0*(W)= 2 ¥ T (= %) G
respectively.

Now, in what follows we need the following

Lemma Il. For the roots under (59) of the Legendre polynomial P,(x) we have

no]—x2 P,(x) 2
(R B TPV £n S e
e ve1 1—x2 1= X [P.i(xw.)(.\'—\ )] .

uniformly for —1=x=1.

®) See [1], 264, form. (6. 7).



The extended Hermite — Fejér interpolation formula 97

This fact was already proved by the author in the paper quoted above.!?)
For the sake of completeness we repeat here the proof with a slight modification.

Let the positive number & be chosen as small as we please. Owing to (63) and
the non-negativity of the fundamental polynomials of the first kind under (61),
we have for fixed x

: 1 —x2 P,(x) 2
67) At S VTN ] =
( |-‘m.—-.‘t| =z | — ,\'fn 3 % | an ('\-\-u) (-\-_ -rrn)]

ko o

2
], =e¢.
|-twt = xI =t l e .qu Pﬂ ("‘l’ﬂ) ('\‘ — "-\‘ll)

On the other hand, by the aid of the relation

(68) A e
r=1 (I i -\-vn) Pr: (-\'m)-

-

shown by L. Frifr'?)
Py(

X) a2
baien 3 =gt el l_?; (X (x'—.\'v;)“J N
1 |
s>t (1= 22 P, (x,)° 1X— Xl
holds. Thus, taking into account T.J. STIELTJES's estimation’?)

(69) e . SN DR . SN

=(1—x2?)P,(x)? = :— (1—x2)P,(x)?

¥n -
l.l__\..'!

where ¢ is a numerical constant, we have obviously

L=~ P,(x) 4
70 > 5 | X=Xl | 77 : —1 =¢
( ) I"""‘__';q L Lo -\':n l \ ' l ‘P" (xrn) (-‘. A '\'\'n) ] )

if 11 is large enough, i. e. n = N, say. Combining (67) and (70) there follows for — 1 =
=y=]

. e X _& S— 2-:: 1 ’
i ) X ‘\“l[ P EIC—5D ] =2 ifonly n=N,

i.e. (66) is valid, Lemma Il is proved.
Next, similarly to our Theorem 1 (§ 2) Weierstrass approximation is expressed,
but only in each subinterval —14+d=x=1 (0=6-=2) by the following

Theorem 1. Let f(x) be a continuous function in the closed interval —1=x=1.
Furthermore let beside 1 the zeros under (59) of the Legendre polynomial P,(x) be
chosen as fundamental points, and let the arbitrary given numbers

P Pes &5 Vi s 123 )

10) P. SzAsz, [7], 424.
11) See [2], 221, form. (45): or [3]. 78, form. (39).
12) See [6]. 241 —242,
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be taken for slopes, provided that
(71) [yl =4 vk wanl #a=102.3, )

A being independent of n and v. Then for the generalized almost-step parabola S,(x)
of degree 2n at most corresponding to f(x), i. e. with the property

Sn(-‘-ru) :.f(-"\-n)- Su{ I ) “_'f( 1 ), Sr: (-‘.wr] = _1":.,,

(il 2 gt m=); 2. 3as)

the relation
S, (x) = f(x) for —1=x=1

holds if n — + <, the convergence being uniform in each subinterval —1+o=x=1

(0=5=2).

PRrooF. First we prove that the almost-step parabola ¢;(x) of degree 2n at most
corresponding to f(x), that is by (64)

: B Fx) e
(72) gy (X)= v% f(x,) 3 _—\‘3" l P o) (x— %) ‘] +f(1)P,(x)?

converges uniformly to f(x) for —14+d=x=1 (0<=0<2) if n —~ + =,
By the aid of (63) it may be written
1—x2

(73) ()= ﬁf(.\-)w———z--‘
v=1 1 Xyn

5 S, PN
ity | P

and by (72), (73) follows
(74) S(¥) —ga (x) =

o = uz
- 2; [f(x)— f(xw,)]~l :“2_ [ P,(x)

ks Xyn

2
Po)e—xg] TUE-SIFE?
But
(75) [/(x) =f(D]P(x)* ~ 0

uniformly for —14+0=x=1(0<0<2). This is an easy consequence of the fact
that the first factor [...] vanishes for x=1 and is continuous for —1=x=1, while
P,(x) -0 uniformly in each internal subinterval — 1 +o=x=1-0 (0<o<1) and
is bounded in the whole closed interval. Hence it is sufficient to prove that

n s l = xZ oLt P" ['1) 2 2,
(76) ,.é [f(x) _.f(A \'n)] 1 2 P,: ('\‘wr) (.‘I.' X .‘.“) 0

“vn

uniformly*?) for —1=x=1 if n -+ =.

13) This fact was already shown by E. EGERVARY and P. TurAN ([1], 264—265) and later a
little differently by the author ([7], 422—423). For the sake of completeness we repeat the proot
in the text.
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By reason of the theorem of Weierstrass there exists a positive number M for
which
(77) ) =M (-1=x=1).

Further the continuous function f(x) is also uniformly continuous in the interval
—1=x=1, therefore the positive number ¢ having been chosen as small as we
please, there exists a positive number 7 such that

(78) ) —f(x") = ¢ when |¥—x"|=1.

By the aid of (78), (63) and the non-negativity of the fundamental polynomials of
the first kind under (61), we have for fixed x

—_ 2 . 2
2, - o (e |

s tms 2 [P —x

4 1 —x2 P,(x) =
5 !P r: ('\'rn) ('\. i '..\‘m.)] —

(79)

=¢
— 2
|x\.|-|‘-"i"—;_-t l_'\.\!.ll

On the other hand, by (77) and (68)

(80)

1—x? P,(x 2
b s

|Xvn=x|>t X

2M 1
=—(-x)P,(x? 3 — —
7 ¢ 1‘21 (1= x2) P, (x,n)?

holds. Taking (69) into account again, we obtain by (80) at once

]

M
= %— (1—-x3)P,(x)?

_ Fn 1—x2 Py(x) 2|
|3 Ue—-fix, WL\ RS ¢ (W
(81) AR P [ Hoae] |*

if n is large enough, i.e. n= N’, say. Finally, by (79), (81) there follows

B & g 1—x2 P,(x)
?v =1 [f(‘) f{\ M)] $ [ Pl: ('\‘vu) ('\. St '\.vn)

s X\'n

2
i

for —1=x=1 if n=N’". Thus, (76) is established, i.e. the almost-step parabola
(72) converges uniformly to f(x), for —1+4+d=x=1 if n -+ <.

Now, since the generalized almost-step parabola S,(x) is according to (38)
the sum of g¢j5(x) and Q7(x). that is by (65)

S oo )+ $”l ’ 1—x " - L"(ﬂ S :
"N=GEO+ 2w T X | T G- |

for a proof of our theorem there remains to be shown that

n o, 1-x _ Pa(x) ]3
(82) V:S.; Yyn (.X' T vu) [ P; (xm) (x xm) -0

lﬁxvn

uniformly for —1+d=x=1. This may be seen as follows.
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Since

, 1—x
Vn i__

— X

by reason of the assumption under (71) and the obvious inequality

T
Itbal o2 gt it SEvEl.
[ I 4 x d
we have in the same interval
L 1—x P,(x) A
Yon ———— (X=X W) | ———m————] |=
"‘=le. 1—.\'“ : )( Py (Xyn (x_-\‘\-ll) J !
§2A_ *].x2

4 Scws. ] P P, (x) 5
= (s v=1 l—_\'z * '\M( P;(-Tvn)(x_xvn) ] 4

v

Thus, from Lemma Il under (66) results (82), with which the proof of the theorem
is complete.
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