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On the summability of the Fourier series of L* integrable functions, I.

By E. MAKALI (Budapest)

§ 1. Introduction

Let m, be the class of trigonometrical polynomials of order n and

i1} f(x)= %’ - }_E,' (a, cos kx + by sin kx)

an element of the class m,. The partial sums of f(x) of order / will be denoted by

si(x) or s(x; f). (Of course s,(x)=/(x).)
Let 4,, B,, C, be the least quantities for which the inequalities

1.2) f max {|s,(x)|2}dx = A,
0 O=l=n
(1.3) [ max {is,(x)|}dx =B,
0 OU=l=n
35
(1.4) max {U s,,{_‘,(.\‘)dx|= =C,,
nix) 0 ;

respectively, hold for any f<xn, of unit square norm:

2n

[ 1fozdx=1.

0

Here n(x) may be any measurable function, assuming on (0, 27) only the values
| R A

These quantities play an important role in investigations into the convergence
of Fourier series of L? integrable functions. If any of the sets {4,}, {B,], {C,} would
be bounded, it would follow that the Fourier series of every L2 integrable function
would converge almost everywhere. If, moreover A4,=0(1) would be true, then
the envelope of the partial sums of the Fourier series of any L? integrable function
would be itself L? integrable [2].

Actually, however, considerably less is proved, namely that

(1.5) A,=O0(logn). B,=0(logn), C,=0(logn)
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and it is not known whether these estimations can be improved or not beyond
exchanging the symbol O into o.

In this paper there will be given another proof of formulae (1. 5) by investigating
the behaviour of the following “finite”™ analogues of A,, B,, C,, i.¢. of the least

quantities A", B{"™, C" for which

5: o I‘ 5, ]' } Almj {00200 £ Z (a,a, + hkbs.)}s

1
m .=y 1=0,1

(1.7) 2 Zm maa{ [ ]1} ‘""{"°“°+2(ataﬁ+bkb,)}

m r=1 1=0,1

(1.6)

(1.8) max % 1 [ ]) 1y g {aoao - 2 (aa,+ by bk)}z
I:':IO“‘L.::'m e _l e

hold for any fem,.
We shall prove

Theorem 1. Between corresponding pairs of the six quantities Au. By, Cy, A",

B, C™ the inequalities

(1.9) 4,824, B=WzB", C=0=l
hold.
Theorem 2. If ¢,n—=m = c,n where ¢, and ¢, are independent of n, e. g.
(1. 10) m=n, m=2n m=2n+1
then
(1.11) A" =0(logn), BY"=0@logn), C\"=0(logn).

Formulae (1. 11) are equivalent to the estimations (1. 5) since each of these
six estimations can be deduced from the corresponding estimations of the other
set. Yet it seems worth while to prove the asymptotic behaviour of A", B{" and
C," without having recourse to the asymptotics of A4,, B, or C, and so to furnish
another proof of the known asymptotical behaviour of these latter quantities.

Moreover the quantities AL”, B! and C{™ are in some respects more easily
treatable than the A,’s, B,’s and C,’s. So if one wants to compute numerically the
first few terms of the sequences A4,, A4,,....B,,B,,...., or C;,C,, ... one faces
nearly unsurmountable difficulties’). In contrast to this one can find in the cases

) Even in the simplest case n=1 the calculations yield the not very informative result

132 + VY2432
A;zl—:--i +32 — with ¢= ShLa

= ——
n[_ﬁ.l]
4

The corresponding extremal functions in (1.2) are the polynomials afl - ¢ cos (x —xo0)} where xo
:s an arbitrary constant.
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(1. 10) for small n’s and m’s by more or less straightforward calculations relatively
simple numerical data of which the following ones seem to be worth mentioning:

(1.12) A" =1, B?"=1 for n=1,23;

(ny 3 (m) _ ,':.3 (n) 3 st e 3
{1.13) A e ¢ B, —l, 5 for n=6, C, —]; 3 for n=10 and n=16;
(1.14) A V=1, BV 2], dor psd;
(1.15) A™ <1, B™ <1, C™ <1 for meven and =2n,n=1,2, 3.

In the cases corresponding to (1. 12) and (1. 13) one can discuss the cases of
equality too, in (1. 6) through (1. 8). We have for m =2n (n=1, 2, 3) that equality
occurs in (1. 6) and (1. 7) with the value A" =B =1 if and only if

f(x)=a, cos nx (n=1, 2, 3)

In the case m =n corresponding to (1. 13) equality occurs both in (1. 6) and
(1.7)forn=6and in (1. 8) for n=10 and n = 16 (these are the only caseschecked) if
and only if

S(x)=a(} + cos nx).

The results of these computations point to the estimations (1. 11) [and hence
(1. 5)] being not the best ones, at least in the cases (1. 10).

But more than this can be said. A survey of the numerical values of many
AM s, Bi™ s and C""s led to the result that in none of the cases calculated did the
values of the quantities A™, [B™]* and [C™]* exceed (n/m)+ 1. Particularly
simple numerical values were obtained when m was a divisor of n. In these cases
the extremal functions in (1.6) through (1.8) could be found too, i. ¢. the functions
for which equality is attained ‘n these formulas. The numerical data obtained suggest
the following

Conjectures. 1. If m=2n, then AY" =B =1 and the only extremal functions
are both in (1.6) and in (1.7) a, cos nx.
2. If mn (including the case n =0 when of course m may be any natural number )
then
mh 2 mj, 2 n I
Awn: B| M) 2 at Cl ).. - + :
n ( n ) ( L) H' 2
and the only extremal functions are in any of the inequalities (1. 6), (1. 7), (1. 8) the
polynomials

(1.16) } 4 cos mx + cos 2mx + cos 3mx + ...+ cos nx

apart from a constant factor?).

?) It should be remarked that by using Lemmas | and 2 the checking or disproof of these
conjectures lor not too large values of n and m can be mechanized and programmed for a computing
machine.

Remark added on proof, September 4, 1964. In the meantime it could be shown by using the
computer FINAC of the Istituto Nazionale per le Applicazioni del Calcolo, Rome, that if m'n
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If any of these conjectures would be true this would imply in view of Theorem |
the boundedness of the sequences {A4,}, {B,}. {C,}.

The conjectured extremal functions f have the properties

—,I—r:j.‘],--:_;“'(%—rl (1=0, 1, .c.; n—15 r=1.2. ...;mm)

and '
f'[“z'rir'] =IO (=12, m)
m

and if Conjecture 2 is true, the “best” set {n,} in (1. 8) i. e. the only case for which
equality can occur there for a certain trigonometric polynomial is n, =n, = ...
v =y =M.

It should be noted that

(2n) (m) _ n l (m) _ { ." ] L) o n l
A "=l A =s—+=, By =l —4+=, Ch = .f mn)
A m = 2 - I'm 2 i fm™ 2 i

is readily seen to be true by inserting into the inequaiities (I. 6) through (I. 8) the
functions indicated as extremal functions in the conjectures.
§ 2. Proof of Theorem 1
It is easily seen that if

" l 2’.: ]I-
> max |s;| Xo +—r
m

e ,
(2 l) A:,"n(.\'g): max e ! 1 e __]
JFEm,
f=0 l_ [ ‘v)|2
< [ f(x) 2dx
0
then
(2.2) A (xg)=AL".
For if f,, =/ (¥) =f(x + x,) then
... & Y 1
= '=2' m?x Is,_[.\u m e f]‘ m r—le_ @ax s,[» r: fm

/[f{\) 2dx ;—flf;u(.\'}:zdx
0

and m= 53, then ('Lm) = ’

and f(x) is of the form (l.16). Cfr. Report n. 1439 of the INAC, December 30, 1963, further
Part II of this paper and a note of A. Guizzetti: On the evaluation of quantities concern-
ing the almost everywhere convergence of the Fourier series of L? integrable functions. Qua-
derni dell’ INAC, in the press.)

I express my sincere thanks to the Istituto Nazionale del Calcolo and particularly to
its director, A. Guizzerri, for their kindness of having performed the numerical calculations
in connection with this conjecture.

" 4= further equality stands in (1.8) only if ni=nma=...=nn=n
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Further if f*(x, is a trigonometric polynomial with partial sums s3. s7(x), ..
having the extremal property that

2=
] ma\ s;(\) 2dx=A f [ (x)|2dx

0

then
2r/m ;
rrr\'l : | 4 23'{ |2 i "
. max sf{x+==r]l dx 2xm | [ 2n
F=0 , {3 m ) . — Y max |sf|x +—r
0 " m m,= 1 n 5
.’1": > s n — —.?___.__.__ == ; =
f £ (x)|2dx 0 1 . foxia
p = [ % (1)1 2dt

0
2rim 2mfm

= j A () dx = f ™ A™dx =24,
n n
0 0

A similar argument shows the validity of the other inequalities (1. 9).

§ 3. Some more general problems

Let x,, x;, ..., x,, be a set of strictly increasing real numbers (x, =0, x,, = 2n)
and let ny,n,,....,n, be a set of nonnegative integers none of which exceeds ».
We consider the following problems.

PROBLEM la. To find the least constant A, (x,, X, ..., X,,) for which

| .
(3. 1) . > max 5(: IR =A (s, Xa s x,,,){aoao + Z (a, a, + b,.b,c)}
my=1i=o, N 2 k+1
holds, if f€n,.
PROBLEM 1b. To find the least constant A, (xy, ....x,: ny,....n,) for which
(3.2) 2 Ed DA 00 a X3 Bye gD )l"" °+ 3 (a,ﬁﬁbk&)}
,._ k=1

holds, if fen,.
The solution of Problem la depends on the solution of Problem 1b since
(3.3) A, (x4, ...,.\‘,,,):l AR D0, i Xt Wiy i Bk

we=0,1,....,n
r=1,2, wesy R

Indeed if f*(x) is a polynomial for which (3. 1) holds with sign of equality and
nf is one of those indices for which

max [8,0x,; f*)|? = =[S (x, 3 b |
1
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then
(3.4) A, (xy, ...,.\',,,)?‘é:-'- b, W SOEENE. B AR .

Again if /** is a polynomial for which (3. 2) holds with sign of equality then
one has by inserting /** into (3. 1) and comparing (3. 1) and (3. 2) that

(3. 5) ;:I X5, ot Wy iy MY B AR, <ois Hg)e

The last two inequalities are equivalent to (3. 3), which reduces the solution of
Problem la to that of Problem Ib and to the finding of the maximum of a finite
number of quantities.

Now let

I
(3.6) D= £ s s eOb . 5 ahs
2 2,=,

be Dirichlet’s kernel. We state the following
Lemma 1. The solution A = A (xy. ... Xps Ny, ... n,,) of Problem 1b is equal to

the largest eigenvalue of the positive semi-definite and real symmetric matrix D =
= [dpg), =1 with elements

P =

(3 7) dpq = Drnin (ng. !r,,l('\'p = '\.q)'

We introduce the notation

1 if g=|h|,
Wch) ba 0= 0 if g=|h

and represent the polynomial f(x) in the form 2> ¢~ where

i B 1 ’ : O aail . .
Coz'iq.-*fu:‘z"(av—fbv) if v=0 and ¢,= > (a,+ib) if v=0
so that
(3.9) 3 5‘.:‘._—5'92-‘1’-"-+; > (a,d,+b,b,).
vE=-n vl
In view of the representation
(3.10) S [ 5 G

Problem 1b can be reformulated as follows: to find the least upper bound A of the
quotient

m n L -

o - Y2 7 N . EE

- |Sn, (X) 2 < CunGyby
-y _r_—l. L e 2 o r==nu==n .
ayd -3 = e L
990+ 3 (a,a,+biby) o A2
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(Z,&,#0) where

l "’f' _ .
f\'lt — 2 2 E”r' ‘_enx,.snﬂ Pe— fuxy
r=y

Now this is a classical problem in the theory of quadratic forms, for both the
numerator and the denominator are quadratic forms of the variables ¢,. Since
€, =Cyy, both of these forms are positive definite or semi-definite Hermitian forms
and it is well known that A is equal to the largest eigenvalue of the Hermitian matrix
£ [Cm]:._n= —ne _

We introduce now the 2n+1 by m matrix G=[g,] (—n=v=n1=p=m)
where g,,=2""¢, ,e"r.If m=2n+1, we add to the matrix G 21 + 1 —m columns
of zeros. So we get the quadratic matrix F:

TR e RIS, 0..0

b I SHI._H+I‘,—J1-|-II.\'| ...8"."_ _ﬂ+]{)—r'(u--'lj.\'... 0 “.0
B E :

O s os By 34 & 0..0

The conjugate transposed matrix of F will be denoted, as usual, by F~.

It is easily seen that C= FF~,

We refer now to a theorem of Matrix Algebra according to which the spectra
of the matrices C=FF* and 4= F*F are the same [3]. But 4=[4,] (p.q=
=1.2,....2n+1) 1s of the form

dll drll ...d]m 0 ...Orl
i

2n+1—m rows

2n+1—m columns

where the quantities d,, are defined by (3. 7).
Indeed, it is easy to see that d,, vanishes whenever p =m or ¢ =m. In the remain-
ing cases in view of (3. 6) through (3. 8)

I n
R s S on VX = ivx,
‘)pq_'_ 7 ) t'ﬂl...\'( H*'Enq.ve bl
& V=—n
= l ' fl‘i.\‘;.—.t',)_D ( —_ )_d
o ny e e = Emin(ny. ny) .-‘p -\q — “pge

= |v] = mining, ng)

Finally the spectrum of A differs from that of D only by a number of zeros so
that their largest eigenvalues coincide.
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We mention that in the case m=>2n-+1 a similar argument shows again the
validity of the lemma. The matrix Fis formed in this case by adding to the matrix
G m—2n—1 rows of zeros. 4 is again equal to F*F.

§ 4. Some more general problems (continued)

Let z,, z,, ..., z,, be any complex numbers, x,, ..., X,: %y, ..., 1, the quantities
defined at the beginning of the foregoing section. The sets {z,}, {x,}, {n,}
(r=1,2,....,m) will be denoted briefly by z, x and n, respectively.

Problems analogous to those dealt with in § 3 are

PrOBLEM 2a. To find the least constant C"(z, x) Jfor which

] " = 2 n i ‘&
(4° Il max ; A ZrSn (\r* f)‘ = ‘ )( ) |£9|_ + 2 (akdi +bkbk)
a,:ﬂ,zl,..,...?” = ey 2yt
r=1,2,....m

holds, if fén, and
PROBLEM 2b. To find the least constant i,=7,(z, X, n) for which

4.2) .Zm:, f) =4 (z, x, n]{ L “4 Z (aya, + bkbk)}

r=l
holds if f€m,.

Just as in § 3 one can show that the solution of Problem 2a reduces to that of
Problem 2b by virtue of the relation

) ] a
(4.3) C"(@, x)=— max Ai(z x,n).
my,.-0,1,..n
re=1,2...m
Concerning the quantity 4, we have
Lemma 2. The solution 7, of Problem 2b is equal to

{ Z. d,,q:,,_.—,,}%

ni=
with the notations of (3.7) and (3. 6).

Indeed, using in turn (3. 10), Cau;hy s inequality and (3.9) we have

"l n m 2
&1 — - =

._'. e gnr(\ fJ = 3 by 2.' Eu,. \-'r"?“"l

Fol y=o—-n r=1

" " " "
= B IF12., % v pitxpy § o R s
= L oy i Z su,_.. vep€ P 2, Sn, veg € "=

Ve =pn v=—n \p=1 g=1
"

Ej12., N 27 W IWxp=xq) — M ivW(Xp—Xg) —
‘2 |" <~ <P 2‘ f"f .C" ve £ Z ISl Z “p=q Zrmmlﬂg myls ‘_e“l—\p Yol =
L4 poa=1 P

l ﬂ'u(?o )N
— ;, "_2‘:' d (fl,‘a* -~ bkb ) :P:‘f
& k=1 ‘,
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and equality holds if and only if

L= 2 &, " TWE, (v=—n, =n+1,....n)
r=]

where y is an arbitrary constant.

§ 5. Proof of Theorem 2

To prove the assertion of Theorem 2 with respect to A," we specify Problem
la and 1b (§ 3) by putting

2n
2 —

X, = (F=1:2:..;, )

m

and estimate the largest eigenvalue A of the corresponding matrix D with elements

2n
dN: : Dmiu{ﬂ'w ng) [E (p _-q)] (p’ q= ]- 25 seey ’")'

We use for this estimation the theorem of GERSHGORIN (e. g. [4]) which states
that

]dPP--AI‘-:: Z Ildqu (P—-I, 2. seny fﬂ)

=1
4%
for at least one p, or
"
(5. 1) A (X s Wi Mps. cors Tnd s A M| <+ Z; ]
q=

q=p
for at least one p.

Now

dpp=D, (0)=n,+3=n+1%

and since
1 1 1

WG Tiaan vl o O=<=x=<n)
sinx X mn—Xx

we have for p=gq

T E . I A i 1 __m{l i 1
s ] P S T
25m;1-1p—q Eip—q| n~;};[p—q'

and further

Ap(X1s ooy X3 My g A s i_*_ L [1 - 1 ]
m m n ' i

2 ol
T (1 +logcyn)= O(log n),
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. : 1
since m = rlnz-% [n-&- _;]. Hence by (3. 3) the statement of Theorem 1 concern-
ing A)"” follows.

Since for any set of nonnegative integers 7, n,, ..., H,,

m m

1
n | l ) m b 4
2D Sa(x)=— 3 max [s)(x,)| ={— 3 max Is;(x,)|2
e m i T m

rel re=]

1
G-2) m

we have by the definition of A4,", By and C," that

(5. 3) C:"IE—‘B}‘"”.'—L"F.ALRI)
and so Theorem 2 is fully proved.

There exists another way of proving C," =0 (}log n) independently of the
inequalities (5. 3), namely by the use of Lemma 2 in the particular case x,=2ar/m,
z,=1. Then we have to estimate from above

" 2
max A Dmin Wi i) | e -
ﬂ;_*—-ll.l,....n p,%_—’l (s e [ m (p q')l

This can be done by using the upper bound we have found for the right hand side

of (5. 1). If we perform this estimation we have again C." =O(Vlog n). Incidentally
this procedure is nothing else, but the finite version of the reasoning of Kolmogoroff

and Seliverstoff [1] in their proof of C,=0(Vlog n).

(m)

§ 6. The constants 4, ' and the corresponding extremal functions

In the following we shall use the well known

Lemma 3. If the elements of the Hermitian matrices I'" =[y{}] and I'" =[yj]
satisfy the conditions

V= Vi (i#j): Vi =i

for each i and j, then the largest eigenvalue of I'" is not less than that of the matrix
r”. If moreover yi; — yii = 7=0(i=1.2, .... n). then the difference of the two maximal
eigenvalues is just 7.

We consider now the problem expressed in (1. 6), that is the finding of A,
In connection with Problem la and 1b of Section 3, particularly with (3. 3) in the
case x,=2nr/m we define U as the aggregate of all “maximal” sets of indices
ny,n,, ..., n,. This means that if {n,}€ U, then and only then

1

1 2 4n
— AT T hevs ""‘]=E A Ay v )

A=— 4 —,
* T " Im’m

?



On the summability of the Fourier series of L? integrable functions, I. 111

We state
> o . - ] .y
Lemma 4. U contains a set of indices {ny'} such that max ni” =n and if the
0 & 4 4 y
elements of {n‘, "\ are re-written in a non-increasing order nﬁ?‘l, nﬁ,(:’. n‘,‘fﬂ' then
(0) 0
(6. 1) e —he < for k=12 ...m~1.

We remark that this lemma implies that minn,’' = n—m(m—1).
Let us choose an element {n,] of U, If max n, = n, =n then consider the set
{n''! defined by
n=n, if rze,n®=n.
If the set {n}"’} does not fulfil the condition (6. 1) given for {n\"’} then after reordering
its elements in a non-increasing order, the sequence of integers

(1) _{(1) 1)

(6.2) Ny s Ags 5oves Ma,

contains g gaps of at least m —1 numbers:

S ) SI = [
Wan, — Mgy, o s EMY s, n},hg —n$),, =m
where hy <h, <...<h,.
Let us suppose that

; b 8 1 -
(x+Dmzny) —ny,) | =xm

where » is an integer.
2)y = 4
Then we construct thz sequence {ny”’} in such a way that its %, largest elements

. . . (1 .. >
coincide with the z, largest elements of {n, '} whereas the remaining elements are

greater by »m than the corresponding elements of {nf.”}. The set of indices {n*'!

contains one gap less of the type defined above, than the set {n{"}.

If one compares the elements of the matrix D(n‘f), ...,nﬁ)) with those of
D, ...,nf.f)) [where D= D(n,, ..., n,) is defined by (3. 7)] then one sees that
the off-diagonal elements are the same while the diagonal elements of the latter
matrix are not less than the corresponding elements of the former one. For if, say,

n,=n,, then

(6.3) Dyiq (np +m, mg+m)(Xp— X = Dpin (1 1g) (cp— -\'q) =
0 if psg,
m if p=gq.

) . 2n e
= 3 cos (n,+ 1) (p- q)—{

u=

Hence by Lemma 3
(1) (1) (2) (2
A )2 4,057, s 0S)):

Repeating the process of reducing the number of gaps g times one arrives at

a set of indices {n{,"”} which fulfils the conditions imposed on {nEO}}.
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Concerning the behaviour of the AY"s as functions of #» we can now state

Theorem 3. Ay",, = Ay" +1 and there exists a function ¢ (m) of m such that if

n ;-q(mj then A", = Ay + 1. For such n’s the coefficients of any extremal function
f(x) in (1.6) exhibit the periodicity ay=ay.,, by=">b;.,, if k+m=n—qg(m); in
particular b,,=b,,, =...=0.

In proving the theorem we shall use (3. 3) with x, =2ar/m and Lemma 3. Let
p g
{n”’} be the set of indices defined above. Then

1

Alm} /1 ("(;’JI nm:)
holds, where A,(n}", ..., ny") is the largest eigenvalue of the matrix D(n\”, ..., ny ).
Then one has by (6 3)
(6.4) D(nllo' +m, n.., +m)= D{nﬂm, o nf,?’) +ml,

where [/ is the identity matrix. Hence by Lemma 3 the largest eigenvalue of the left
hand matrix in (6. 4) is equal to

A", ..., 8+ m.
By (3.3) we get

(m'l

(6.5) AnYw= [/1 (1Y ooy ) +m]= A" + 1.
We choose now ¢(m) = m(m—1) and suppose that nam(m— 1). Then by

Lemma 4 the set U’ of all maximal indices corresponding to A" contains a set
{n/} with the property min n;, =m:

1
Aptm=—A SR,
+ m .p|+m(nl n )
Now
D(ny. ....nm)=D(ny—m, ..., ny—m)+ml,
hence
Apim(ly ccoynm)=A(n1—m, ..., np—m)+m
or by (3. 3)
m ’ l ’ ’ m

(6. 6) A= /l (ni—m, ..., n,.,wm)zh-!- Asalttie vy M= 1 = b

(6.5) and (6. 6) yield 4,7, = A," +1 for n=q(m).

Concerning the statement of Theorem 3 about the coefficients of the extremal
polynomial (or polynomials) in (1. 6) we first prove that all the coefficients b, (m'k)
of an extremal polynomial must vanish. Indeed, let

*

e (.\A)=‘329 + 3 (at cos kx + bf sin kx)
1
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be an extremal polynomial and

x

fi10)= Q‘ZU . %‘: a; cos kx+ > bf sin kx.

mik

Then. denoting the quotient

: = 'Sn*“l('znr afl /{aoao + 2 (aa,+ bkbk)}
m 2 T

1 e

by Q(f) where n” has the same meaning as in Lemma 4 one has by the extremal
property
A" = max Q(f) = Q(f*).
fErn
Further, since sin k<2nr/m =0 if m |k, the numerators in Q(f*) and Q(f;) are equal,
whereas the denominator of Q(f*) is not less than that of Q(/,). This implies

A= Q(f)= Q).

The sign = cannot stand here for this would contradict the extremal property of

the polynomial f*(x) and the sign = stands only if b, =b,, =... = b, mm =0.
Further let us denote by /f,(x) = a5 /2 + > (@, c0s kx + b, ; sin kx) the

trigonometrical polynomial of order n the coeflicients of which are defined as follows.
If e = n—q(m) = (6+1)m, ¢ an integer, then

1 e *
g+ 5 dz; o= 7 +am+aim+ ... + s’

if 0=k <m, then a,, and b, , are the arithmetical means of all those coeffi-
CIENLS af, Gk +ms Ak +2m» +-» AN B, b, bis 2m, ... respectively, the indices of which
do not exceed n—q(m);

lf nlf—_‘-‘k‘é”‘_’q (’").. then az'* = az,,‘_m, bZ.ﬁzbl.l*m:

if k=n—q(m) then a,,=a3. by,=b5,.

Comparing now the quantities Q(f) and Q(f;) we see that the numerators
arc again equal since exp {ik«2nr/m} = exp {i(k +m)-2nr/m}. By the inequality
between weighted arithmetical and quadratic means the denominator of the latter

quotient is less than that of the former, except in the case when f*(x) fulfils the
requirements of Theorem 3. On the other hand this latter case has to occur, other-

wise f*(x) would be no extremal polynomial.

§ 7. The constants C."

Let n* = {ni,n%, .... ny} be a set of maximal numbers in Problems 2a and 2b
i. ¢. for which

(m) £ E i ”
& Iz, x)-m A,(z, X, n*).
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We state the following theorems.

Theorem 4. There exists a maximal set n* with the property max n; =n.
r=1,2,....m

Indeed if it were not so. let nf be such that it satisfies the inequalities

n=ni=n; (== 1L 2 s 1)
and let the set {n, n3, ni, ..., ny} be denoted by n. Then by Lemma 2
[on (@5 X, D)2 = [2(2, X, 09)]2 = D, (0) 2, %, — D, (0)z, 55 = (n—nf)z, 2, =0,

a contradiction if z, #0; if however z; =0 then n is a maximal set.

Theorem 5. If
(7. 1) Zy=2,=,..=z,=]1 and x,=2nrim (r=12..:,m)
further {ni, ..., nn} is a maximal set then min n; =0 (mod m).
Supposing the contrary, namely
(.2 ni =min ny # 0 (mod m)

without loss of generality we denote by n the set {#f —1.n3. n3, ..., ny} and form
the difference

(2 (2, x, 0%)]2 — [4,(z, x, W)* =

- {D,,; 0)+2 "}__jl' D, (.\‘,)} - [D,,: LO+2F Dys-y (x,)} =
r= r=1

m=1 2
=142 ¥ cosm——r— ~1=0,
r=1

since m{nf. This shows that n* cannot be a maximal set unless (7. 2) is not true.

Theorem 6. If (7.1) is fulfilled, moreover m\n, then no element of a maximal set
n* can be equal to n—1.

Supposing the contrary, say ni = n—1, we are again led to a contradiction.
Denoting namely again by n the set {m, n,, ..., n,} and by a,, «,, ..., %, the indices
of all those elements of n* which are equal to n we have

(2@, x, D)}2 — {4, (z, x,n%)}2 =

{D (0)+2 V D o ’fl)} { D, ,(0)+2 .Z? Dﬂ—l(xa,'—xl)}
a=1

=1+2 2 cos %-Zn(cxa— 1)=1+2s=0.
a=1

While the foregoing theorems are but feeble contributions supporting the
conjecture of the Introduction concerning the maximum of the quantities 4,(z, x, n)
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in the special case (7. 1), the converse problem, namely to find the minimum of
the same quantities can be completely solved. This solution is the content of

Theorem 7. Denoting by n, the set of m numbers (0.0, ..., 0} we have

]

Bt s 1 G
min A,(z,X,0)=4,(Z, X, M) =15 2 ZpZ,( -
me=0,1,...,0 p,g=1
r=1,2,...,m
In the proof we restrict ourselves to the case m =2n. By deleting the middie
row and last column of the matrix F of Section 3 we form the 2» by 2n quadratic
matrix F, and denote by 4, the matrix Fi F,. We have with the notations of Section 3:

d11—‘!' ﬂ'lz—"i' e e ‘!lm_'é 0 - O ;
p dm—3 dpa—3% ... dp—% 0 ... 0
0 0 0 0 0
: : }2}1—»1 rows
0 0 0 ) R |

2n— m columns

The matrix 4,, being the product of a pair of conjugate transposed matrices,
is the matrix of a positive semidefinite Hermitian quadratic form. Hence

m tH m 1 —_
2 duz, L 21 Ezpzqéo

pa=1 p,a=

which is the assertion of Theorem 7. (Cf. Lemma 2.)

§ 8. The cases of small /'s and n's

The calculations leading to the conjectures of the Introduction are of no parti-
cular interest. There were used three different methods based either on the definitions
of A™, BM™, ™, or on Lemmas 1 and 2.

In each case a survey of several and sometimes of a great many particular
cases was necessary. So we confine us to give two not very tedious specimens of
these computations, namely (a) the discussion of the case m =4, n any even number,

(b) the calculation of C®ifnisa multiple of 8.
(a) In dealing with m=4, n even, first we will verify that

" O |

8. 1) AP = z7+t7  (neven).
Lemma | can now be applied conveniently, since, if p #¢g, the quantities d,,
(p # q) occurring there are either 1/2 or —1/2 and d,, = n,+1/2. We have to show
that the eigenvalues of the matrix D are not greater than n+2 or if I is the unit

matrix of order 4, the eigenvalues of the matrix D = D—117 = [JN] are not
greater than n+3.
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Let y={y;, 2,53, ys} be any real valued column vector and y'={y{, ..., yi}
the column vector Dy. We have to show that y'2 = (n+3)2)2, or that
) 3 : ] N2 - 3 ! 2z 2
O(yy. ....,n):[n + 2—] y*—(Dy)y’ —2' {ln + 2--] Ve =Y }

is a positive semidefinite quadratic form.
We have
2 +

£ :
y12= [ 2’] d,q_vq] =n}yl+2n D ydy,y, +( _’._-“2 d,qu] =
q= q=2 a=

2

4 3 &
=niyl+n 3 |d |03 +yD)+5 3 yi=
g=2 4 q=2
3] 5083 § . 2
:‘uf+n.-z]]‘i+('§]+Z](J-’%+-‘S+J'3 +y3).

From similar inequalities for the quantities y3, v, vi we infer that
el -wlaa Il el Bl s
O(y,. ...,y,,)=-.[n + —2] %y;—zr,[n;+n,— 4-]);4% [5 + 4' %J- -

4n— >
= {(nz —n2+n—n, + i3 2"""'-'} Y= AR = 30)
A

and Q,(y,, .... ys) is positive definite if 4n— > n,=0 i.e. it is definite unless
(8' 2) Ny =N =N3=N4=N.

So the eigenvalues of the matrices D are all definitely less than n+ 2 unless (8. 2)
holds.
It rests to envisage the matrices D in the remaining case (8. 2). There are two

types of them:

n+% 3} P 3 ey, =% Ly
P n+d 1+ 1} o E. L W }
(8:3) + 4 nt+d % e : —Intdr -2
1 1 1 a+d -3 & =¥ vk

according to whether » =0 (mod 4) or n =2 (mod 4). In both cases the eigenvalues
are n+2,n,n,n and so (8. 1) is verified.
The extremal functions in (1. 6) satisfy in our case the relations

R Elliec Nt A=0.1 o r=L2% 0
otherwise Af,*' would be definitely less than : B ; To find them we have to
find according to (3. 3) the functions for which

s 5 n 1]]}lael? . .
> s S il LGN |2 12
(8.4) 4,= |f(x,)]| (4 G 3 2” 5 1 k._f.; (lax|® + 15:])
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holds. (This is formula (3. 2) with sign of equality and with n, =n, =ny; =n,=n.)
Since the largest eigenvalues of both matrices (8. 3) are simple, there will be accord-
ing to Section 3 only one polynomial satisfying (8. 4). ?)

It is easy to verify that this is apart from a constant factor the polynomial

(8. 5a) 14 cos 4x +cos 8x +cos 12x +... +cos nx
for n =0 (med 4) and
(8. 5b) cos 2x +cos 6x +cos 10x + ... +cos nx

for n =2 (mod 4).

The special case n=2 yields 45’ =1 and the corresponding extremal function
is cos 2x, as already mentioned in the Introduction.

By (5. 3) it follows that

B =)/ :4- ; =l :+ ; (n=0 mod 2).
Actually the sign of equality holds in the first relation if # =0 (mod 2) and in the
second one if n =0 (mod 4). This is readily seen by inserting (8. 5a) or (8. 5b) in
(1.7) and (1. 8).

Again the polynomials (8. 5) are the unique extremal functions of both inequali-
ties (1. 7) and (1. 8). For if there would exist another extremal of these inequalities
linearly independent of (8. 5), then in view of (5. 2) the relation (1. 6) would hold
for the same function with sign of equality, a possibility excluded earlier.

(b) For the determination of C§ (A any natural number) we want to show
that if z={1,1,...,1}, x,=2ar/8 (i.e. x={n/4, 2n/4, ..., 8n/4}), n={n,, ..., ng}
where the n,’s are integers not exceding n=8h and

(8. 6) ny+ny+...+ng<8n,
finally n* = {8h, 8h, ..., 8h}, then
8
(8.7) {4,(z, x, m)}2 < {4,(z, x, n*)}? :{ B dmld e
p.a=1 dpa="1, if Py

(Cfr. Section 4.)
In case of arbitrary n,’s a survey of every possible numerical value that can be
assumed by any of the d,,’s shows that

(8. 8) dp=n,+4%4, dy=4 if p—g=+42, +3,4 (mod 8)

and, if p—qg =+1 (mod 8) then

(8.9) dp= ; + ]— if min(n,n)=1 or 2 (mod8), d, = otherwise.

1
V2 2

3) The spectra of C and 4 are the same and the largest eigenvalue of 4 is in our case simple.
So there exists only one eigenvector belonging to the largest eigenvalue of C: its coordinates are
the complex Fourier coefficients &. of the extremal polynomial.
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This means that of the off-diagonal elements of the matrix in Lemma 1 only
those ‘“‘neighbouring™ diagonal elements may exceed 1/2 and these in turn only
if one of the neighbouring diagonal elements is of the form 8g -1+ 1/2 or 8g -+2 4 1/2,
Conversely each index n, of the form 8g 41 or 8g +2 is responsible for at most 4
off-diagonal elements d,, greather than 1/2. (If e.g. ny;=2, then the clements
dy 3:q,d35,.5 may exceed 1/2.)

Suppose now, that x elements of the set {n,} are congruent to 1 (mod 8) and
p of them are congruent to 2 (mod 8). Then by (8. 8) and (8.9)

8

 dpg =2 Nyt 82-;— +4(a+f)

-1 r=1

N

—

L

P

=
(]

"3
V2
=8 —a—P)8h+(o+P)[8(h—1)+2]+324+4(x+f)- 131;2 =

=64h+32+.(ac+[3)[—8+2+ l%—l

hence

8
2 dpy=64h+32
p.q=1
and equality is attained if and only if 2 =f=0 and n, =n, =... =ng = 8h. Finally
by (4. 3) there follows

Cin = |/h --f§' = | ’; + ; ;
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