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On proximity functions and symmetrical topogenous structures

By SANDOR GACSALYI (Debrecen)

To Professor A. Ropcsak on hs 50th birthday

It 1s the aim of this note to point out how topogenous orders, more exactly
symmetrical topogenous structures, can be put to use in studying proximity functions
and equivalent concepts. Our terminology and notations will be those of [1] and [2]

Definition 1. A symmetrical topogenous structure on a set E is a relation
— defined on the set of all subsets of E and satisfving the following axioms !):

(O1) 0<0, E<k;

(02) A<= B implies A — B:

(03) Ac- A <B =B implies A B:
(S) A=B implies £~ B<=FE— A;

(Q”) the formulae A<B and A'=B imply?) A _A'=BUHK;
(7.9) if 4 < B, there exists a set C such that A = C - B.

The set of all symmetrical topogenous strctures on £ possesses a natural par-
tial order, namely the one induced by set-theoretical inclusion in B(E) % B(E):
is “smaller” than =, if =< =, i.e. if 4= B implies A ==, B.

Definition 2. A proximity function on a set E is a mapping z from the set
of all subsets of E into the set of all filters on E satisfving the following conditions?)
for 4, B, CCE;

) See [2), pp. 7.. 9., 12., and 59. In [2] it is not the relation = itself, but the one-element set
I'={ =} which is called a symmetrical topogenous structure.

) (8) and (Q") together yield:
(Q') The formulae 4= Band A"~ B imply

AnA’'<=Bn B'.
Similarly, (8) and (Q’) together imply (Q"). Thus, in the above definition (Q”) can be replaced
by (Q).
3) See [1], p. 6. Thus, contrarily to the terminology of Boursaki, we do not exclude the

improper filter, i. e. the set of all subsets of the set considered. Filters different from this will be
called proper filters.
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(Al) If B€a(A) then BoA;

(A2) If A< B then x(A4) > «(B);

(A3) If B€a(A) then E—A€ca(E— B);

(Ad4) For any B€x(A) there exists a C such that B« (C) and C¢ex(A).

The set of all proximity functions on a set £ possesses a natural partial order,
defined by the condition “x(A4)=a'(A) for all A= E”, which will be denoted by
aca’. (See [1), p.7.)

The two concepts just defined are in fact equivalent as is shown by the follow-
ing

Theorem 1. (1) If = is a symmetrical topogenous structure on E then the function
% defined on the subsets of E by

a(A) = {X|4<X)
is a proximity function on E.
(2) If = is a proximity function on E then the relation =, defined for subsets of
E by
A=,B o Beca(A)

is a symmetrical topogenous structure on E.

(3) The mappings < —~o. and x—~ <, are one-to-one correspondences, inverse
to each other, between the sets of all symmetrical topogenous structures and all proximity
Junctions on E which preserve the respective partial ordler-.

Proor. (1) For any A~ E,
2 (4) = {X|4<X)

is a filter, Indeed, 4 <X < Y implies 4 =Y by (O3), while by virtue of (Q") 4 = X,
and A<=X, imply A<=X,NX,.

Moreover, this filter z.(A4) has the properties (Al)—(A4):

If Bea_(A), i.e. if A<=B, then A< B by (02), i.e. (Al) holds.

Let now be Ac B and Cca(B), i.e. B<C. Then ACB<C implies 4 <C
by (03), i.e. Cca_(A). This proves (A2).

As to (A3), B€oa.(A) i.e. A<B implies E—-B<E—Ai.e. E-Aca(E—B).

Finally, if B€a_(A) i.e. if A< B then by (7. 9) there is C such that A <C~<B
i.e. such that B€a_(C) and C¢x_(A4). Thus (A4) holds.

(2) We clearly have Eca(E) i.e. E=,E; O <,0 i.e. Oca(0) follows then by
(A3). This establishes (O1). 4 <,B i.e. B€a(A) implies B A by (Al), i.e. (02)
holds.

Let now be A< 4" <=,B'— B. This means that

B B ca(A) —a(A),
and consequently B€x(A) i.2. A~ ,B (by (A2) and by the fact that the «’s are fil-

ters). So we have (03).
<=, is also symmetrical. We indeed have

A<,B <> Bea(A)
and

E—B<,E—A < E—A€a(E— B).
Thus the validity of (S) follows from (A3).
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In order to establish (Q) we first remark*) that for any 4, B~ E,
2a(AU B) = a(A) Na(B).

Now, from A=,B and A" ,B i.e.from Bcx(A) and B c2(A") we infer B'JB ¢
ca(4)Na(A’) = a(AUA’), i.e. AUA =B P.

Finally, (7. 9) follows from (A4): If A=,B i.e. if B€a(A) then by (A4) there
exists a set C such that Bea(C) and C€u(A), 1. e. such that

C=,B and A-<,C.

(3) Let <—a.; a—=<,. If a=a. then < ==,
As a matter of fact, 4 =,B means that Bcx(A), i.e. for x =xz_. we get

A=,B = Bca_(A) < A—=B.

On the other hand, let x + =,; = =a_. If == =, then 2. =a.
As a matter of fact,
1 (A) = {X|A<X

and for - = =, we accordingly get
Hold) = {X|4d< X} = {X|X€a(A)} = a(A).

Finally, let aCa,, i.e. a(4)Ca,(A) for any ACE. Then <, <,,. — As a
matter of fact, A =,B1i.e. B€a(A) implies Bcu,(A)i.e. A=, B. On the othcr hand.
if <= <, then . “a.,.Indeed, B€a (A)i.e.A<=B imphes fl < B i.e. Bea. (A).

This completes the proof of Theorem I.

Besides proximity functions, B. BANAsSCHEWSKI and J. M. MARANDA introduce
in [1] several equivalent concepts: Proximity relations, regular kernel operators
and regular classes of filters. By Theorem I. each of these concepts is equivalent
to that of symmetrical topogenous structure. For proximity relations this result
is due to A. CSASZAR ?).

Here we are now going to state and to prove in a direct way the theorem linking
together symmetrical topogenous structures and regular kernel operators. For this
purpose we need the following

Definition 3.°) A regular kernel operator on the set @(£) of all filters on a
set £ is a mapping 7 of @(FE) into @(E) satisfying the following conditions for

NED(E):

(K1) If A=Y then yA < yU:

(K2) YA =A;

(K3)  7(y3)=yN;

(K4) y(ANNY) = yANyY;

(K5) If A and B are incompatible then y3 and ¥ are incompatible.”)

%) See piroposition 4. on p. 6. in [1].

*) See [2]. p. 65.. (7.26). The definition of proximity relation given in [1] differs slightly from
that given in [2], but the two definitions can be proved to be equivalent.

) [1]. p. 10.

") Two filters A and ¥ are said to be incompatible (written: AAB) if together they generate
the improper filter, i.e. if AN B = 0 for some Ar¥ and B V.
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For a given set £ the set of all regular kernel operators @(E) possesses a natural
partial ordering y <~ 3" which is defined by the condition:

A< yA for all A€ P(E).

The symmetrical topogenous structures on £ and the regular kernel operators
on ®(E) correspond to each other as described by the following

Theorem 2. (1) If < is a symmetrical topogenous structure on E then the mapping
v defined by
P :AU“{X| A<X)

for Ne®(E) is a regular kernel operator on ®(E).
(2) If y is a regular kernel operator on ®(E) then the relation - y defined for
subsets of E by
A<,B e B¢ y[A]

is a symmetrical topogenous structure on FE.

(3) The mappings <= —~y. and y—~ - are one-to-one correspondences, inverse
to each other, between the sets of all symmetrical topogenous structures on E and all
regular kernel operators on ®(E) which preserve the respective partial orders.

PROOF. (1) If A =B then 4 <X (A€A) implies A =X (A€B), i.e. y Ay B,
This proves (K1).
A =X implies 4 — X and this together with 4 < vields X <=. Thus . = .
i.e. (K2) holds.
By (K2) y.(y )=y If, on the other hand, Xy .U i.e. A <X for some
A € then by (7. 9) there is a subset C of £ such that 4 <= C < X. This means however
that C€y A and X€y(y<N), i.e. that y . A= y.(y<N). So we have (K3).
Making use of (K1) we easily get
7.(ANB) < 9y ANy .
If, on the other hand, X<y A My B, then
A=X(A€NA) and B-=Y(Bed).
From this we infer by (Q”) that
AJB<X (AUBecAMNN),
i.e. that X€y(ANY). This proves (K4).
Finally, if yA49, i.e. if XN B = 0 for some X =4 (4€A) and BE Y, then
by (7.9) thereisa C— Esuchthat A <C<=X.By(S)we have E-X<E—-C<E — A.
Now BCE—X<E—C implies B<E—C. Thus E—C¢y_.98, and this, together
with Cey N yields y A4y B, i.e. we have (K5).

(2) Let A=, Bi.e. B€y[A). By (K2) we have B<[A]. i.e. A= B. This proves
(02).
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In order to establish (S) we first point out that by virtue of (K2) and of (K3)
AANB if and only if A4y,

Let now again be A= B, 1.e. Bey[A]. Then we get the following relations
each of which implies the next one:

y[A]1A[E — B,

y[A14y[E— B),
(414 y[E — B],

E—Acy[E—B)?®)

E—-B<,E-A.
Thus (S) holds.

As to (Ol), clearly E€y[E] i.e. E<_E, and O~,0O then follows by (S).

In order to show the valtdlty of (03) we first remark that A — B implies [B] —
~ [A] and this in turn implies y[B] < y[A4]. Let now be A A" = B'— B. We have
B £y[A’] and -uonsequelrulyr Bey[A'l < y[A4), i.e. BEy[A], or eqmvalcntlv A<,B.

Let now be A<.B and A"< B i.e. B€y[A] and B’ €y[A’]. By the lmplncatlon
A< B = y[B]cC ;(A] just cstab]lshed y[4]U y[4’)cy[ANA’). Thus we have
B, B'cy[AM A’] and consequently BB €y[ANA], i.e. ANA"<,BNB. Thus
(Q) holds.

If A< B i. e. BE€y[A], then y[A]4[E—B] and by (KS5) y[A]4y[E— B],
i.e. there exist disjoint X€y[4] and Y€ y[E— B]. Thus, by the definition of =,
E—B-=_Y and consequently £--Y = B.

At the same time E— Y X€p[A] implies £E—Yep[d], i.e. A= E—Y. This
establishes (7.9.)

(3) Consider the mappings < —y. and y - =,. i y=y_, then = = <. Indeed.
A =_B means that B¢ y[A4]. For y=7y. this condmon can be written in any of the
following equivalent forms:

Bey [A]:
X =B for some X¢€[A];
A X =B for some X;
A=B.

Thus we have in fact =, = <,

On the other hand, let ,*+ <, and =—y.. If ===, then y.=7.

As a matter of fact, X¢y. means that A = X for some A €N. For <= <
this condition can be written in any of the f'ollowmg equivalent forms:

A=, X for some A€N;

X€y[A] for some A<,

¥) [Aldy[E—B] means that AN X = 0 i, e. that X—E—A for some X« y[E— B], and then
E—Ar¢ y[E- B]since y[E--B]is a filter.
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Thus we get
Ae XN
From this formula it is now possible to derive ) y.=7.

Finally, it is clear from the definitions of y. and =, respectively that < < -,
implies y.<y., and that y—y, implies =, <, . This completes the proof of
Theorem 2.

Let us now enter upon a brief discussion of the equivalence existing between
symmetrical topogenous structures and so called regular classes of filters. We start
with the following ')

Definition 4. A set ¥ of filters on £ is called a regular class of filters if it
satisfies the following conditions:
(R1)  For any family {A,liel} <V,

SiANlicliey.

(R2) If A, BeW, then ANBey.
(R3) If A<y is incompatible with BE @(E) then there exists a € =N in
¥ also incompatible with .

%) For a proof see [1]. p. 11., (3). — For completeness sake. we are going to repeat this proof
here. For this purpose we need the following

Lemma. If the filter U is properly contained in the filter B then there is an ultrafilter \l contain-
ing W and incompatible with 8.

Proor oF THE LEMmMa. By hypothesis there is a set H satisfying Hc8 and Hi¢ A. Now H¢
clearly implies(E—~H)n A#0 for 4¢ . (Of course, A is a proper filter. since it is properly contained
in another filter.) Thus there is a proper filter § satisfying A<,F and £ HcF. If 1L is an ultra-
filter containing & then 1l fulfils the requirements of the lemma.

Let us now give a

PROOF OF THE EQUALITY 7. = 7. (K1) clearly implies

U 2[4 =%,

i.e. by (%), 7. Uc N
From this by conditions (K1) and (K3) valid for y. one obtains y.(y. %)< y.(32) and y. A
< y<(3%). At the same time N <A implies - ;A= y. A, and so one has ;. A = ;. A
Similarly, from
YU =p2(y-Mc pr<MWec .U

it is seen that y. U = 3(y-N).

Now suppose that for some U ¢ @(E) the filter ;. U is properly contained in yA. Then there
exists an ultrafilter 11 = 7. A incompatible with 39, and this implies by (K5) that yI1l and ;% are
also incompatible. If A" 32 has void intersection with some set belonging to 711, one furthermore
has [X]4;11 and consequently y[X] 41l

However, 1 5 7. A gives
U2 2(3<A) = A = y.(#N),
and by formula ( ) X< ;9 implies y[X]c 7. (), hence y[X]< yll which is a contradiction since
A, b‘.lcing contained in the ultrafilter 11, is a proper filter. It follows that y. % = ;3 for A< @(E),
i. e. that y<=17.
This result, combined with ( #) vields

A= U 790
AeN

for any filter A on E and any regular kernel operator 7 on @(F).
') See [1]. Proposition 9.
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As is shown in [1] (Proposition 9.), there exists an order-preserving one-to-one
correspondence between the sets of all proximity functions and all regular classes
of filters on a set E. Since, on the other hand, we have by Theorem 1. an order-
preserving one-to-one correspondence between symmetrical topogenous structures
and proximity functions on E, a correspondence of the same kind exists between
symmetrical topogenous structures and regular classes of filters on E. More explicitly
this statement can be formulated as follows:

Theorem 3. (1) If = is a symmetrical topogenous structure on E then the set
Y _ of those filters A on E which satisfy the condition

A = Y {X|4=X)
AeN

is a regular class of filters.'")
(2) If ¥ is a regular class of filters on E then the relation = defined by

A<yB -+ Be 3 {A|[A] oA P}

vields a symmetrical topogenous structure = ..

(3) The mappings < —~¥ . and ¥ —~ <, are one-to-one correspondences, inverse
to each other, between the sets of all regular classes of filters and all symmetrical
topogenous structures on E, which preserve the respective partial orders.'?)

PrOOF. This theorem is an immediate consequence of Theorem 1. and of Propo-
sition 9. in [1]. — A direct proof, modelled on the proof of Proposition 9. in [1]
is also feasible.

We are going now to establish a few results concerning (symmetrical) topogenous
structures. Our starting point will be the following

Definition 5. A topogenous structure '?) = defined on the set E is said to
be compatible with the mapping f of the set £ into the set £’ if f(x)=/(y) implies

() <X = (3} =X.

Proposition 1. /f the topogenous structure < on E is compatible with the mapping
fof E into E', then A< X implies f~'(f(A)) <X for any A, XCE.

PrOOF. By (0O3) A <X implies {a} <X for ac€A. Let now be x¢cf='(f(A4)).
Then f(x)=/f(a,) for a suitable a,€ A4 and {a,} =X implies {x} =X. Thus we see
that 4 =X implies

() {x} <X for xef='(f(A)).

1) In the German version of [2] these filters are called ,.,round™ (runde Filter), a terminology
due to KOWALSKY.

12) I,e. =< =, if and only if ¥. c ¥., for the corresponding regular classes of filters.

'*) The definition of a topogenous structure is obtained from Definition 1. by omitting (5)
and by adding (Q’). The compatibility defined here is in fact equivalent to that introduced in
[2] on p. 106. — Let us also note right here that Proposition 2. below is but a special case of Theo-
rem (9.29) in [2]. It will be stated and proved only in order to make the presentation self-contained
as far as possible.
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Now (I) in turn implies /~'(f(A4)) < X. This yields the implication:
() A<X<H = f~'(f(4))<H.
By (7.9) A = X implies the existence of a set K such that A = K= X, and so by

(11) we get f~'(f(A4)) = X. (If, on the other hand, f~'(f(A)) = X. then by 4 —f~1(f(A))
we of course get 4 <= X.)

Proposition 2. Let a mapping f of the set E onto the set £’ be given. If ~ is a
symmetrical topogenous structure defined on E and compatible with f, then the relation
=" on E’ defined by

A" <"B means that f[~'(A)—=f""(B)
is a symmetrical topogenous structure on E' and = =f-1(=").

ProOOF. One easily sees that =" is a symmetrical topogenous structure. As a
matter of fact, if A'<’F, i.e. if f~1(A")<f~1(F), then f~1(4)<C<f~Y(B) for
a suitable C— E. — By (03) and by Prpoosition 1. we now get

U A) <[ AC) <f~"(B),

A <’f(C)<'P.

This shows that <=’ satisfies Condition (7. 9) of Definition 1. As to the remaing
conditions of that definition, it has been pointed out in [2] (see (6. 30) and (6. 34))
that =’ satisfies them.

We put now for the time being =*=f-1(="). Then 4 <*B means that
f(A)<"E’—f(E—B), i.e. that

=1 (f(A))<f-'(E —f(E- B)),
or equivalently

I (f(A)=E—-f"'(/(E-B)).

From this we infer by (0O3) A = E—f~'(f(E— B)). and with the help of axiom (S)
and of (O3) we get

Y (f(E-B)<E-A=E—B<E—A=A<B.

Thus we have proved that A4 —=*B implies 4 — B. By going through the steps of
the above proof in reverse order'?), we obtain a proof of the reverse implication.
Thus = = <*=f"1(="). This completes the proof of the proposition.

Let us now denote by IT(E) the set of all proximity functions defined on a set
E. The one-to-one correspondence existing between proximity functions and
symmetrical topogenous structures can be put to use when investigating the relation
between the sets IT(E) and IT(E’) for two sets E and E” which is determined by a
given mapping f of E into £

As a matter of fact, let «" € [I(E"). The corresponding symmetrical topogenous
structure —,. = =" is defined by

A"="B" means that B €a'(A").

4) In doing so, we have to use Proposition 1. instead of (03) on the appropriate places.
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By the mapping f of E into £’ there corresponds to —  defined on £ a relation
f~Y(=")=~= defined on E as follows (see [2], (6. 1)):
A =B means that f(4)="E —f(E— B),
or equivalently
A< B < E—f(E—B)ca'[f(A))].

This relation < is in fact a symmetrical topogenous structure defined on £ (see
[2]. p. 100.) and so there is on £ a corresponding proximity function z . = defined by

(A} = x. (1) = (X4 <X},
i.e. by
2(A) = {X|E—f(E—X)e[f(A))}.

This proximity function « is said to be the inverse image'®) with respect to the
mapping f of the proximity function «":
o=1"3(x).

(With the help of the inverse of the corresponding symmetrical topogenous
structure one can also define the inverse of a regular kernel operator or of a regular
class of filters.)

An important property of the inverse of a proximity function is expressed by
the following

Proposition 3. Letr f be a mapping of E into E', 2" ¢ II(E") and o= f~'(«"). Then
for any A E the filter x(A) is the one generated by f~'|2'[f(A)]].

Proor. For X¢€a(A) we have
Xof E —f(E-X)ef~H{a'[f(4)]}.

On the other hand, if H=7""(H’) where H' €%'[f(A)]. then f(E— H)(H = 0.
Thus
E'—f(E—H) > H €d[f(A)]

and so Hea(A).
The validity of the following propositions is immediately clear:

Proposition 4. The correspondence between a proximity function and its inverse
with respect to a mapping f is order preserving, i. e. 21 a5 on E’ implies f~'(x1) =
—f~Yx«3) on E.

Proposition 5. The proximity functions o on E which are inverse images with
respect to a mapping f are compatible with the equivalence relation

Ry = {(x. MIA) = f(3): %,y E}
in the sense that f(x)=f(y) implies «({x})=a({y}).

Proposition 6. /n case [ is a mapping of E onto E’ the relation between the proxi-
mity functions %" on E" and their inverses «=f—'(«") on E is one-to-one and it maps
IT{E") onto the set of all x€T1(E) which are compatible with R, .

%) In [1]) our f-'(«’) is denoted by ( f*a’).
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Proor. That /' maps [T(E’) one-to-one into [I1(E) is a direct consequence
of the fact that for a mapping which is onto the relation between the corresponding
symmetrical topogenous structures is one-to-one. (See [2], (6. 5).) We have already
pointed cut that the inverse image of a proximity function with respect to a mapping
fis always compatible with 2. There remains still to be shown that for any 2 € I1(E)
compatible with R, there exists an «’ € [T(E’) with f~1(2") =a, this is however an
immediate consequence of Proposition 2.

Propositions 3—6. together express the fundamental result of BANASCHEWSKI
and MARANDA characterizing the inverse of a proximity function,

Finally, let it be mentioned that in two short communications (see [3]) M.
HacQUE intreduces concepts generalizing some of those considered by BANASCHEWSKI
and MARANDA. — I am indebted to professor A. CsAszAR for having pointed out
this to me.
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