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On the distribution of values of a class of entire functions I

By S. DANCS and P. TURAN (Budapest)

1. The distribution of values of functions of type
(_[- I} f(_‘} = 2: P‘_(_—](,l’l,:
i=1

where the ;s are different complex numbers and the Pj(z)'s are polynomials of
degree =p—1 (p=1) or — what amounts to the same — the distribution of their
zeros is intimately connected with several important problems. Such questions
occur e. g. in the study of solutions of retarded and non-retarded differential equations
of finite or infinite order with constant coefficients; such problems occur in the
study of developments according to their characteristical functions, dealt with in
the papers of RitT, C. E. WILDER, TAMARKIN, VALIRON, GELFOND, D. G. DICKSON
and others (see [1]) nothing said on the theory of mean-periodical functions. In the
technical literature they are treated mainly in stability questions of control-systems:
such papers are mentioned in a paper of S. SHERMAN (see [2]); see also some papers
of PONTRIAGIN and Myskis (see [3], [4]). The vast literature on our subject can be
found in the expository paper of LANGER (see [5]) and in recent books of B. LEVIN
(see [6]) resp. of R. BELLMAN and K. CooKE (see [7]). See also a still more recent
paper of KARLIN and SzeGG (see [8]) where connections with stochastic processes
are indicated. Investigating the distributions of zeros of high-order derivatives of
rational functions G. POLYA (see [9]) was lead again to the problem (1. 1). Neverthe-
less the following type of theorem seems not to have been observed before (see [10]).

If with complex a;’s and ;’s

n

(1. 2) g2(2) = 2 ajenr (z = x+1iy)

i=1
and®)
(1.3 max ;=M

i
(1.4) min |, —o,| = 4,
=y
*) Since the roots of g(z) do not change after multipyling by **, « complex number, (1. 3)

can be replaced by
max |, — o, =M’
B,

D17
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then with arbitrary real 4, B and positive L the number of zeros of g(z) =0 in the
square

(1. 5) A=x=A+L, B=y=B+L

(counted according to multiplicity) cannot exceed

(1. 6) 6LM + nlog

|
Z-LAL + log 2n.

The point of the theorem is of course that this upper bound is independent of
the coefficients a;, of the position of the square and only very loosely dependent
on the configuration of the w;-exponents. Easy examples show that dependence
upon L, M and n is indispensable; the necessity of 4 in this bound has not been
established. In what follows (paper Il.) we shall show that the answer is positive
to the second natural question, namely that whether or not an analogous upper
bound (depending also upon p) exists for the more general class (1. 1).

2. The main role in the proof of (1. 6) was played by the following theorem.
If for the complex z;-numbers with a positive é the inequality
min |z, - z,|
2.1 e =i(=1

max |z,
i

holds, then for fixed complex b;’s and positive integers m we have the inequality

N e W B )
(2. 2) v.—_m?}‘.:l...,.;,mhl L s - 2"12]

independently of m.

This theorem was stated and proved in the German edition of [9]; the signi-
ficance in applications was realized in the Chinese one (in which the proof of (1. 6)
appeared for the first time). In this paper we shall prove an analogous theorem which
fits the more general situation. This runs as follows:

Theorem. If the complex variables z,. ..., z, are restricted only by

min |z, —z,| max |z;|
2.3 L =4(=1 and 2 = D(=1),
e min |z;] ol min |z i)
J J

then for all fixed complex d,;, positive integers m and p the inequality

n - r=1 Y
2 Zj) 2 Auip!
j=1 u=0 ‘u

ll_‘ _IP—l v
=> lz;1Y 2 1du;lu! p

1 =0

plp—1}

2pn+— 3
s o -2 | —
= (m+ np) [SD]

max
vem+il m+2...m+np

J

holds.
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The intended application to the class (1. 1) will follow in the second paper of
this series and an application of theorem (1. 6) to another class of functions, which
is in a certain sense much more general, in the third paper.

Another way to obtain the theorem in the second paper is via the following
theorem.

If Pj(z) are polynomials of degree =p—1, 4A=0 given and m is a positive
integer satisfying p —1=m+ 1, then with the notations of the previous theorem
there is an integer v, with

m+l=vg=m+np

so that for all w-values with |w|=4A the inequality

n

Z (‘0) J} 5 2pn+ EEZD
= = (m+np)-P(m+np+ A)- p[BD]

2 1By o+ w20

holds.
We shall not give the details of its proof.

3. Before turning to the proof of our theorem we shall make a number of
observations. With the abbreviation

3.1 I [‘(;] lmj_ ]]=a#, (m positive integer)

we consider first the linear system

M

(3. 2) !_Zt,;ay‘”_,xlzﬂu ([_IZO, l, -..,r).
Then we have

dpo 0 . 0 .Bo

.‘fll ‘.110 . 9 Bl
3.3 Xp= |3 . . 1

| retr=1 Qpeyr-2" ar 1.0 B 1‘

Iar.r Qyr-1 e e Br |

Hence HADAMARD's determinant-theorem gives

3
r=1
]Yr e Z IB\-!Z] .'IIO ([aj0|2+!aj+1,1|2+"'+|ar,r—j|1)‘}°
Ja=

Since | :;# ) increases monotonically with g, the second factor in this product is
bounded by

[;] {1+m+1)24 ... +(m+ l)zr_z‘i}i'ﬁz'l"'m(m-l- 1y,
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i. €.

(3.4) [x,| = l _?:' IBV|ZI%2"'(J‘+ 1)2 (m + 1)(r+:')_
v=0

Next let ¢(z) be analytic at the point == f(=0) and let
(3.5) " 2" g (2)}¥2 = €, = prescribed u=0,1,...,p~1.

What upper bound can be given to the ¢X(f)/’s? LeBNiz's rule gives

M 1\
s [ﬂ {m;L 'Lﬂ(ﬂ""q“'"””‘” =C,. B=0 Yooaayp =i

=0
This is a linear system for x,=pf"¢"(f): hence (3.4) gives at once
1

s r+1 r ._
(3.6) Bl lg™ (B = 2" (r+1)2 (m+ l)( 2 )l ¥l IC,II] ; r=0,1,::;p-L
I=0

4. Our main concern is to get information for the &, -unknowns (h=1, 2, .... np)
in the linear system
"2 ooy [m4+h E "
4.1) 2 ap [ = ],u! &n = A,j(= prescribed)
k=1 u

J=livaa ity =01 . 0ip=1

where x,,...,a, are different fixed non-vanishing complex numbers. Introducing
the polynomial

4.2)

i

=

b

ék:lr— 1 q (Z)

h=1

It

with this ¢(z) the system (4. 1) can obviously be written in the form for each fixed j

(4.3) o "N @), =4y (u=0,1,...,p—1).

But then for each of our %;’s we have the problem (3. 5) with C, =A4; and ff=u;.
Hence we obtained from (3. 6) the

Lemma 1. The linear system (4. 1) is solvable (uniquely) and the solving &, -
system is such that

11 ]y (1) | = 2u3( : (ﬂ‘.; l) S 12 i
|IJ'I 7 (If)i 2 (ﬂ+ ]) (fﬂ‘i’ l) f—2‘0 |AI'J‘ ]
pg=01 iy p=1, i=4L2 ..l

5. Now we have to represent ¢ (z) in terms of the values ¢“(x;). We introduce
the notation

5.1) 0@ = ] -2
5.2) T R T

o)
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then we can represent ¢(z) in the form

b=

(5.3) ff(:) = ; {(.'{U-i—f‘u(:’—ttj)—F...-I—(“,_l__,-(:—-zj)"_l}fj(;')"

¢ |

]
-

with suitable coefficients ¢,;. We have evidently
(5.4) ('oj:f{(aj}; Jj=1,...,n

as to the determination of the other coefficients it suffices to assume j= 1. The deter-
mining relations are

(5. 5) p]. gP(a,) = 3 - : (g;i.()] Comry ¥y p=0,1, ...p—l

For the estimation of these coefficients ¢,; we shall need the

Lemma II. For j=1,2,....n and all non-negative integers r the inequality

d_" e pn—1)
_d:r !j(_) T=a; 5! [ ]

holds, if
(5.6) min |, —a,| =d(=1).

ja=v

Again it suflices to take j=1 and r =0: we shall prove this by induction with
respect to p. For p=1 we have for all positive r's

dr :
i aall - L
[d:_" l( )}:;1. - (a1 _ail)(zl op zi:)n'(al % zl.-)

where the summation is extended over all indices (i,, .... i,) for which

2=f<i=<.. <i=n
Hence from (5. 6) we have
dr ' 1 [n—1 P "n—-I]
|==1,(z = - ==
| dz '()m,l o\ r ] o\ r

which proves our assertion for p=1.
Suppose now the lemma is proved for p=p,— 1. p, =2 with all positive r’s.
LEBNIZ's rule gives

(o). - GlfEnert. e
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Therefore from the induction hypothesis

= 5[]k ) o) (e D=
‘ "“"" =Zo[k]a[ ] ][ ]

S n—1||{(po— D(n—1) n—1 (pg—l)(n—l) o
=Tsa§o{k](""“ ”"(r—k[ k ] :Z[ ]( ]

= [%9] coeffs. z- in (1+2)" '(14z)Po-D0-1) = [%] [po(;;—])]

indeed.
From (5. 5), using the abbreviation
1L |d
(5.7) [d,, 2 (4).,] =
we get for u =1,2,...,p—1:
1
To 0 a0 o1 qﬂrm(zl) |
1
DL R R R e (o)

|
?uvl ?u—z RS (ﬂ l)'qtu 1)(a )

1 |
Y.u ?,u-"l L }'l ;!"!“”(71) :

Hence again HADAMARD's inequality gives

i |
(5.8) €| = [2 PR A CY)
v=0 .

The second product is owing to (5.7) and Lemma II.

{, of”[ ] [p(n_l)]z}z [ ] ["‘"H‘”]”zi

while the first factor is owing to Lemma 1.

n
IT (ol +Imaf2+ ...+ 17,3,
j=

u 2vd ¥ 2(“;l) ¥ 5
Sl AT L i)
v=0V: oty | 1=0

3

= 2”"“:(ni+ l)(";l)[zﬁ: iA“lz]
=0
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if only
(5.9) min |a;] = 1.
j

Collecting these, we get for p = 0,1, ....,p—1

il |m

and hence we have the

L . 2 - %
l*"("' ”| 277 g 1)(”3')l ;?}Anlzl
I=0 y

Lemma IIl. For the c,;-coefficients in (5. 3) we have

p=1 n
Si= 3 3 eyl =

n=0 j=1

pip- H 2(p-1) -
("_ l) 2 L2 ety "‘

[ ] « 2377 (i 4 1)Pp— 1. 23 jZl (A4
= =

np

6. What we actually need is an upper bound for S,= 2 |{,/>. Since from
h=1
(4. 2) and (5. 3) we have

il t,4=

Bk T S - P
(6.1) S, = 5 j lg(2)|2 |dz] = o j ; Z ¢, j(z—a)yl;(2)?| |dz| =
Izl =1 lz]=1

& |z —a;| 2% |1,(2)|2* |dz|,

using (5.9) we get
lz—ay2% = (14 |o,)** = (2|oy|)2P~2 = (2D)?*r-2

and
. 0 . 2D n—1
1;(2)] = I, o) = [T]
ot j
if only
(6.2) max |%;| = D(=1).
i

Hence from these, Lemma IIl and (6. 1). we get the

Lemma IV. Under suppositions (5. 6), (5.9) and (6. 2) we have for the solution
of the system (4. 1) the inequality

np pip-1) b I
h=1 0 s p—l

b} 2pin-1)
["D] (2D)*r-2

At

) 2p-1)
] 237 (m+ 1)ptr-1).

4]

r=1 n
N
2 2 |4;l*).
n=0 :—I
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7. Now we can turn to the proof of our theorem. Since the left side of the
assertion is homogenous in the z;’s we may assume without loss of generality

(%L1 min |z;| =1,

(7.2) m;_ixjizj = D(z1),

(7. 3) minJ,:p -z, |=0(=1).
e

Putting

(7. 4) P;(3 xS = d,,zl‘ l

(1.5) [ VlP (V).

{a

let vy, be defined as one of the indices with m+1=vy=m+np and

(7. 6) max S =S ().

vem+1,...m+nap
We consider now the system (4. 1) with the choice

(?.7} I)""::j' j:l,

A j = ﬂ' I-- |‘u—"'-l (# ] e—ilaredy +(m+ arczy) d"'rAw‘

gall Ly p 1 =210l i e
Denoting the resulting &’s as &i's, using the inequality

p-1
2 2 |A712 =(m+ np)?®-1).D2r.ppn,

n=0 j=1
the application of lemma IV. yields the inequalities

np pip—1) - 2(p—1)
(7. 8) > |Eh]2 = n2p? p] [p(n “] 230 (m + np)?* *r=2.
T o p—1
2pin=1)
.[ZD] [20)2(n+np¢__
)

2pin—1) ax(p=1,2n+2) k|
mn + pmuxip n (p")zu., 1)

=230% (m + pp)r>+ P prie- ll+l{ J

2 1)+ pmaxi{p=1,2n+2)
1 e PR
< [— (m+np)2P*+mE U,

8. Now we start from our system

h=1

. 1 |m+h J=1...n
> & 2 il
1 s [ 1 ] Ve u=0,1,...,p—1.
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we get, using (7.7)

iy m+h v :
5 -*"'+hl 1 JJ H! = ‘H! [:] ()-luch,,)--!__-jivr,.

Ch<j
f:-:'l H

Multiplying by d,; and summing with respect to y and j and taking into account
(7.4) and (7.5) we get

Multiplying by =7

np e n' p-‘l ‘»0
(8.2) 2 Gfm+h)= 3 Z ld,l| "] p!lzl%.
h=1 ji=1 =0 M
Hence from the definition of v, in (7. 6) and U in (7. 2) we get
( l*"' : ‘ul = | f(vo)l? ) é"'] = | f(vo)2npU.
J:l n_[l r_.l
But this gives
max /(‘) —— —l“l'—’-(—vyz——-— — _I_
m+l=v=minp M P "_. _'ﬂl Vo Yo llln U
\ 24 j( ]ﬂ Zj .2 :: duj{ ],H' I 5
.."- 1u=0 -1 u=0 n

from which the assertion readily follows.
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