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On the distribution of values of a class of entire functions Il

By S. DANCS and P. TURAN (Budapest)

1. As stated in I., we shall deal in this paper with the distribution of values
of functions of the type

(1. 1) J(z)= _%' Pi(2)e"~ (z = x+iy)
i=1

where the w;'s are different complex numbers, n=2 and Pj(z)# 0 polynomials of
degree = p — 1: this amounts to the same as to study the distribution of zeros, since
for any complex 4 (f(z) — 2) has again the form (1. 1) generally with (n + 1) instead
of n. We are going to have the following

Theorem 1. /f
(1.2) max o, — o, =M,
p=v
(1. 3) min w, —,| =4

H=v

then the number of zeros of f(z)=0 in the square

(1.4) A=x=A+L, B=y=B+L

cannot exceed the quantity

(1. 5) Wy, p. L, M, HE 9p2 log 2np + Spn +
. e A . 5m?
+ LM, [4+ IOn] +p2n+p)log|!l+ Eﬁg

It seems to us somewhat remarkable that the upper bound is independent of
the coefficients of the polynomials P;(z), on the position of the square (l.4) and
loosely dependent on the w;-exponents. Now it would be still more desirable to get
rid of the dependence on A (if possible).

Since the zeros of f(z) =0 and ¢“'* f(z) =0 are identical and n distinct points
on the plane with the maximal distance M, can always be covered by a circle with

l'_22 I?C_'r 1!. we n1a)r SuppOSC instcad Of

(1.2) with w;+¢, = o; (j=1.2,...,m) the inequality

the radius M,

(1.6) max w; =M
i
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and it is enough to give for the number of zeros of /=0 with @; instead of ®; in
the square (1.4) under (1.3)—(1. 6) the majorant

(1.7) Yin,p. L. M, A)= 9p2 log 2np + Spn 4

+IMI5+ P_ B s 4 Sffp
LM [3 ]0”]4—;;(2;: : p]log[ e ]

(For matter of convenience we shall use ; instead of w;.)
As remarked by Professor M. MARDEN in a conversation, introducing the
polynomial

"

(1. 8) QX JT (x—o,)

ve 1

and its discriminant 4, and observing that
|d| = ﬂ o, —w,| = II (:)“—(;)‘,!
l1=p<v=n 1=p<=v=n
we have from (1. 6)

™ ; d| d|
min (@, — o,| = =

¥ a,! ](;) '_l -_(Ml lz_)(;) = l_-

and hence 4 in (1. 3) can be chosen as |d|(M,)2)" (2)"'. Thus supposing we have
already proved (1.7) (i.e. also (1. 5)), it follows that in Theorem I. an upper bo-
und for the number of zeros can be given by

(1.9) Wy, p, Lo My, |d1) % 9p? log 2np + Spn+

s P i L3mp o \(3)- ]
+ LM, [4+ IOn]+p{2n p)log[l L) (M,)2) :

This formulation, applied to the homogeneous linear differential equation

(1.10) FO)ELyM(@0)+a, ¥ D)+ ... +ayy() =0, (N=2)

with constant coefficients, gives immediately

iy -
(1.11)  Y3(N,L,M,,d) = 32N2log N+ 5LM,+3N? Iog{l - z-‘z,—' (M, 1'2)(3) l}
as an upper bound for the number of zeros of any solution of the equation (1. 10)
in a square of side L. if d stands for the discriminant of ¢ (x) = x¥ +a,xV¥ ' + ... +ay
and M, means any upper bound for the distance of any two of the zeros of ¢ =0
expressible in various ways by a;s.

We remark an immediate corollary of theorem I. In the book of BELLMAN
and CooKE quoted in our first paper, in connection with the treatment of systems
of linear difference-differential equations the fundamental role of the distribution
of zeros of the equation

(l 12) det 2 (A,5+ B)e- 1.-‘,5} =0

v=0
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is pointed out; here A4, and B, stand for / </ matrices with arbitrary complex entries.
Theorem 1. gives the possibility to prove at once the analogon of theorem I. for
the equation (1. 12), even for complex w,’s. The role of p will be played obviously
by /41, that of the m;’s by the different @ ones among the numbers

jl Illl'l “‘.fz“‘z T s +,jm".m
J1+J2+ - +Jju = I, (j, nonnegative integers)
+m—

[+
that of n by ( M=
vanishing numbers dmong those of the form

1
] As to M, and 4 we have to consider the set of the non-

(j; _,i;‘) Wy s I (j!:l i j::)“'m

m m

(1. 13) Zhes FEh=l (/. Jv nonnegative integers).

ve ] vml]

and let M7 resp. 4* stand for the absolute maximum resp. minimum of the numbers
in (1. 13). Then theorem I. gives at once the

Corollary. The number of zeros of the equation (1. 12) in the square (1. 4)
cannot exceed the guantity

N

2. The proof will be based, as mentioned in the first paper of this series, on
the following theorem, which was proved there and which we reproduce here for
the reader’s convenience.

I+m—
m—1

'].x+ [k M{.A’)]
with ¥, in (1. 5).

If
min |z, — 2,
(2.1 T : =d(=1)
min |z;)
i
and
max |z;|
gt = =
{e.% min |z; =D(=1)

then for arbitrary complex d,;

.+ < Lp ‘."
:‘. I,, 0! 2, Sl plp—1)
(2' 3) i j;; i {uz it LJ} = (m+np)- 2p? [ O Lsia 2

= 8D

v=m+1,..., "+ np L Y imd| Vv
9 1= Sii)
2 lzil 2 lduilp! .

holds.

s, and positive integers m. n and p the inequality
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For the intended application we first get rid of the fact that m is an integer.
If m, is positive then applying (2. 3) with m =[m,] we get-replacing for the time

being the expression behind max by V-obviously
pip—1)
-]

L y2pn+
(2.4) max V¥V = (m, +np)-2r’ [i%] . v integer.

Now let a,d =0 and the complex w;’s be such that

dwy  dwy
min e " —e"!
. - (1] Y - = -
(2. J) Lols Tawgl %()(E’)
min le "»
i
and
d
—max Re(w, =wy)
(2. 6) enp wv = D(=1).

Then (2. 4) is applicable with

my =2,
hence
np dv
- :_;ﬂ-l 1 .u! w plp=1)
j;; = .h‘;i; b u | d ¢ VR "
a w—— o [ . .’d_'.i F_‘ 70"—
21 le “#P 5;‘ \d,; !
J= i =
and a fortiori
‘n
P x
%‘ e pij o o . SPPP (Lo §
2.7) ma P S Ml B gpiE "’l ; l :
' P e np |\  \mp a+d 8D
=X
" o p=1 . d
2 le*#| 2 |dy;lu!
i=1 p=0 "

3. Now we can turn to the proof of our theorem. Since our upper bound for
the number N of zeros is independent of the coefficients and the number of zeros
of g(z) and g(z)e'- is identical we may suppose without loss of generality that our
square is

2|~
N~

(3. 1 Osx=sL,. —

"
[IA



270 S. Dancs and P. Turdn

Let for u#v be

def def : J
(3.2) Ky=0,—0,=|o,—o,|ew (— <@ =7).

These K,,-vectors are obviously such that with a K, also —K,, (=K,,) occurs:
hence there is an # with —m <2 <n such that the two sectors

[ L) | P S
v [“*J]: =1

do not contain any of our K,,’s. In other words. for each ¢, -argument one of the
inequalities

pid n K _n T ._E 3n
(3.3 —"2'-5-"6;:—-1)'—_—_(;#‘.—'1:2 "(n_.]) mod | 2’ 2],

n 14 i {31: T n 3n
(3.4) E+;l-(n__—_l) :“q‘“—ﬂ(: 3 _E-(P;——_” m(}d[ -2—,71.
holds. Now we choose with this %
(3.5 wy=w;e" " i §-—3 f SRR S

Further wo choose
L

(3. 6) ﬂ—d—-m.

In order to make (2. 7) applicable we have first to get explicit values for 4 and D
in (2. 5) and (2. 6). With our choice of w;’s we have

dwy dw,

min

enr —gtp diw, —w,) d
- 3 o bl . L oy — ey |elFuv—2)
£ = = min ’e " — ll = min 'e""l I -
, — nEV n#Ey
min [e "P

¢ )

In case of (3. 3) this is
d - =
Eeﬂ—ylm,‘-udcos(qw—a)_ 1 gen_pdmnﬁ—n(n—l) i
Eidsin & EMJE e :
np nn—1)  ndp ndp+2dA
and in the case (3. 4)
2dA
[ S n
_‘.L:l—e-;’;dsm-’;(';:ﬁ = n3p o ZdA '
2dA n?p+2d4
B e ng
n-p
Hence, using also (3. 6)
2dA LA

(3.7 de

wp+2dA ~ Swip+ LA
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can be chosen: for D in (2. 6) obviously

2dM LM

is a permissible choice. Finally as to the coefficients d,; we choose them for
j=1,2,....n so that

1022,

S L i ? % ey
3.9 #Z d,in! " = P, l2 + _-.e—u] P

Then (2. 7) assures the existence of an x, with

L L
(3. 10} m§“0 = _5_.
such that .

| L - —:':l

‘1][5 +xp€
10
Z"'Ie [ o )JZi d,lpn! ]
B11) = oy i
pp=1)

I

1P Ld .1 .- LM g
2np Sn*p+ LA g*

4. Now we shall complete the proof by an appropriate application of JENSEN's
inequality. Writing

(4. l) %"'.roe_i’ = :0
the circle
4.2) |z—zo|=LY2

certainly covers our square; hence the number N of the zeros cannot exceed

/) |
log| 2% |.
|:—:r:|lz):[.]'3 . ! f(ZO) 1|

Denoting shortly by W the denominator on the left of (3. 11) the use of (3. 11)
gives the upper bound

-1
4. 3) 2p?log 2np + [2pn g p(P ) ] {

Snp
) -

+log8+log[l+5n p]}+ max 1g W

LA |z—zol=Lel 2
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Now let |f(z)| assume its maximum on the disc (4. 2) for z=z": then we have.
using (3.9),

[f(z*)] = Z P;(z*)| e”#*| =

., LY o
1 Yol 10 = . [ 2]9
= e 3 |d,ln!

i=1 p=0 1

(4.4)

But we may observe first that for j=1,2,....n
{4_ 5] I(:m)- [ |E"’J = {J“I' u| = ;el!l_}:u‘e"'.] :'

Secondly we have (of course if p=2) for u = 1,2, ..., p— 1, using also (3. 10),
ot 40np

1077 "‘” ] e |
np e i A
= L — 2— " —Y A
e = [] e = 807,

n ' n—Dp+2
10 f M P
L

I
This, (4. 5) and (4. 4) give
| /(2*)] = eMLel 2.807. W

log LEN _ a7 a0 5p.
g p

hence (4. 3) gives the upper bound

Sndp
llogS Iog‘l+ LA“H'

2p*log2np 4+ LM l4 44 ——} + 5p+ lZn + 5

Sprucing up a bit gives the upper bound

2 + A " _ ML
9p?log 2np + LM [5+ lOn] Spn+p(2n 4 p)log(l F 1A ] Q.e.d.

( Received December 28, 1963.)



