Rings of finite rank

By R. E. JOHNSON (Rochester, N. Y.)

Let R be a ring and $L_r = L_r(R)$ be its lattice of right ideals. The right rank of R, r(R), is defined to be max. card S^{\perp} , where S^{\perp} is an independent subset of L_r . The left rank of R, l(R), is defined similarly. If R is a zero ring, then r(R) = l(R) = k where k is the usual rank of an Abelian group. Our remarks are restricted in this note to rings of finite right rank.

Associated with the lattice L_r of ring R is another lattice L'_r defined as follows. For $A, B \in L_r$, let $A \subset B$ signify that B is an essential extension of A; that is, $A \subset B$ and $A \cap C \neq 0$ whenever $B \cap C \neq 0$, $C \in L_r$. Define the relation \sim in L_r by: $A \sim B$ iff $A \cap B \subset A$ and $A \cap B \subset B$. It is readily shown that \sim is an equivalence relation. Let $L'_r = L_r / \sim$ and φ be the natural mapping of L_r onto L'_r . If the partial ordering \subseteq is defined in L'_r by: $\varphi A \subseteq \varphi B$ iff $A \cap B \subset A$, then UTUMI showed in [1] that L'_r is a complemented modular lattice. Furthermore, he showed that φ is a meet homomorphism of L_r onto L'_r . Evidently $\varphi O = \{0\}$ and $\varphi R = \{A \in L_r | A \subset R\}$. It may be shown that $\varphi(A \cup B) = \varphi A \cup \varphi B$ if $A \cap B = 0$. From these remarks, it is clear that S^\perp in L_r iff $(\varphi S)^\perp$ in L'_r . Consequently, r(R) is simply the dimension of lattice L'_r . Hence, $r(R) = \operatorname{card} S^\perp$ where S^\perp is any maximal independent subset of L_r .

Each right ideal A of ring R has a rank defined by $r(A) = \dim(\varphi A)$ in L'_r . The *right rank* of an element x of R, r(x), is defined to be r(A) where A is the right ideal of R generated by x. It is evident that

$$r(xy) \le r(x), \quad r(x+y) \le r(x) + r(y)$$

for all $x, y \in R$.

It does not seem possible to say much about the rank of the elements of a general ring of finite rank. However, if we assume that R has zero singular ideal, $R_r^{\triangle} = 0$, then some of the familiar properties of rank hold. We recall that $R_r^{\triangle} = \{x \in R | x^r \subset R\}$, where x^r is the right annihilator of x in R. Let us call R an F_r -ring if R has finite right rank and $R_r^{\triangle} = 0$. For an F_r -ring R, it is easily shown that r(x) = r(xC) for every $x \in R$ and every $C \in L_r$ such that $C \subset R$.

If R is an F_r -ring, then each $A \in L_r$ has a unique maximal essential extension $A^* \in L_r$, called the closure of A. The set L_r^* of all closed right ideals of R is a lattice, which is easily shown to be isomorphic to L_r' . In fact, $\varphi A = \{B \in L_r | B \subset A^*\}$ for each $A \in L_r$. Thus, $r(x) = r(xR) = \dim(xR)$ in L_r^* . Since $x^r \in L_r^*$ for each $x \in R$, and a maximal complement of each $A \in L_r$ is in L_r^* , it is evident that r(R) = 1 iff R is a right Ore domain.

Theorem 1. If R is an F_r -ring, then $r(x) = r(R) - r(x^r)$ for every $x \in R$.

PROOF. Let A be a complement of x^r in L_r^* and $\{A_1, ..., A_k\}$ be an atomic basis for A. Since $\{xA_1, ..., xA_k\}^{\perp}$, evidently $r(x) \ge k = r(R) - r(x^r)$. If $\{xB_1, ..., xB_n\}^{\perp}$, where each B_i is an atom of L_i^* , and if $B = B_1 + ... + B_n$, then $B \cap x^r = 0$. For if $b = b_1 + ... + b_n \in x^r$, $b_i \in B_i$, then $xb = \sum xb_i = 0$ and $xb_i = 0$ for each i. However, $x^r \cap B_i = 0$ by assumption, and therefore $b_i = 0$ for each i and b = 0. Thus, B is contained in a maximal complement of x^r and $n \le k$. Consequently, $r(x) \le k$ and the theorem is proved.

Since $(xy)^r \supset y^r$, evidently

$$r(xy) \leq r(y)$$

for all x, y in an F_r -ring by Theorem 1.

Theorem 2. If R is an F_r -ring and $x, y \in R$ are such that $xR \cap yR = 0$, then $r(x+y) \ge r(x)$. If, furthermore, $x^r + y^r \subset R$ then r(x+y) = r(x) + r(y).

PROOF. If r(x) = k and $\{xA_1, ..., xA_k\}^{\perp}$, A_i atoms of L_r^* , then $\{(x+y)A_1, ...\}^{\perp}$..., $(x+y)A_k\}^{\perp}$. For if $\sum (x+y)a_i = 0$, $a_i \in A_i$, then $\sum xa_i = -\sum ya_i = 0$ and $xa_i = 0$ for each i. Hence, $a_i = 0$ for each i. Therefore, $r(x+y) \ge r(x)$.

To prove the second part, let B and C be relative complements of $x^r \cap y^r$ in and y^r , respectively, and let $\{B_1, ..., B_k\}$, $\{C_1, ..., C_m\}$, and $\{D_1, ..., D_n\}$ be atomic bases of B, C, and $x^r \cap y^r$, respectively. If $B' = B_1 + ... + B_k$, $C' = C_1 + ...$... + C_n , and $D' = D_1 + ... + D_n$, then $B' + C' + D' \subset R'$ and r(x+y) == r[(x+y)(B'+C'+D')] = r[(x+y)(B'+C')]. Since (x+y)B'=yB'(x+y)C' = xC', evidently $(x+y)B' \cap (x+y)C' = 0$. Hence, r(x+y) = k+m = 0= (k+m+n-k-n)+(k+m+n-m-n) = r(x)+r(y) in view of Theorem 1. This proves Theorem 2.

If R is an F_r -ring and $U = \{u \in R | uR \subset R\}$, then U is a multiplicative semigroup by [2; 3.2]. Also, by [2; 3.3], $u^r = u^l = 0$ for every $u \in U$. Since $(ux)^r = x^r$ for all $u \in U$ and $x \in R$, evidently r(ux) = r(x). If r(x) = k and $\{xA_1, ..., xA_k\}^{\perp}$, A_i atoms of L_r^* , then for each $u \in U$ we can select $B_i \in L_r$ such that $uR \cap A_i = uB_i$ for each i. Since $(uB_i)^* = A_i$, evidently $xuB_i \neq 0$ for each i. Consequently, r(xu) = k. We have proved that

$$r(xu) = r(ux) = r(x)$$

for all $x \in R$ and $u \in U$.

Let us call an F_r -ring R an I_r -ring if every $A \in L_r^*$ contains an element a such that $aR \subset A$. Thus, an I_r -ring is a generalization of a principal right ideal ring. If R is an I_r -ring then for each $A \in L_r^*$, r(A) = r(a) for some $a \in A$. In particular, $U \neq \Phi$ for an I_r -ring. If $\{R_1, ..., R_n\}$ is a set of I_r -rings, then their direct product $R_1 \times ... \times R_n$ is easily seen to be an I_r -ring. Also, if Q is a (right) quotient ring of an I_r -ring R (so that $qR \cap R \neq 0$ for each nonzero $q \in Q$), then Q is an I_r -ring (see [3]).

An F_r -ring is called (right) irreducible [3] iff $\{0, R\}$ is the center of lattice L_r^* . If R is not irreducible, then the center C_r^* of L_r^* is a Boolean algebra and each atom of C_r^* is an irreducible ring. If $\{S_1, ..., S_n\}$ is the set of atoms of C_r^* and $S = S_1 + ...$... + S_n (a direct sum), then R is a quotient ring of S. Evidently R is an I_r -ring iff every S_i is an I_r -ring. Thus, the problem of describing I_r -rings reduces to that of

describing irreducible I,-rings.

In a forthcoming paper [4], an F_r -ring R is called *right potent* iff $A^2 \neq 0$ for every atom $A \in L_r^*$. This is equivalent to saying that no nonzero ideal of L_r^* is nilpotent. Let us call a right potent, irreducible F_r -ring a P_r -ring.

Theorem 3. If R is a P_r -ring, then each $A \in L_r^*$ contains an element a such that $A \stackrel{.}{\cup} a^r = R$.

PROOF. The notation $\dot{\cup}$ is used for a direct union in lattice L_r^* . Let r(R) = n. If n = 1, then R is a right Ore domain and the theorem is trivially true. So let us assume that n > 1. If $A \in L_r^*$ is an atom, so that r(A) = 1, then $A \cap A^r = 0$ and $A \cap a^r = 0$ for some nonzero $a \in A$. Since a^r is a maximal element $(\neq R)$ of L_r^* , evidently $A \cup a^r = R$ in this case.

Assume that the integer k > 1 is chosen so that the theorem is true for every element of L_r^* of rank < k, and let $A \in L_r^*$, r(A) = k. Select $B \in L_r^*$ such that $B \subseteq A$ and r(B) = k - 1. By assumption, there exists some $b \in B$ such that $B \cup b^r = R$. Since $r(b^r) = n - k + 1$ and $B \cap b^r = 0$, evidently $b^r \cap A = C$ where C is an atom of L_r^* . Let us select a nonzero $c \in C$ such that $c^r \cap C = 0$, and then let a = b + c. Clearly $bR \cap cR = 0$ and also $b^r + c^r \subseteq R$. Hence, r(a) = k by Theorem 2. If $x + y \in C$ are $C \cap C \cap C$, with $C \cap C \cap C \cap C$ and $C \cap C \cap C \cap C$ and $C \cap C \cap C \cap C$. Therefore, $C \cap C \cap C \cap C$ and $C \cap C$

Corollary. If R is a P_r -ring, then R is an I_r -ring. In fact, for each $A \in L_r^*$ there exist $a \in A$ and $b \in a^r$ such that $a + b \in U$.

PROOF. Select $a \in A$ so that $A \cup a^r = R$ and $b \in a^r$ so that $a^r \cup b^r = R$. Then $(a+b)^r = a^r \cap b^r = 0$ and $a+b \in U$ by [2; 3. 4].

An I_r -ring need not be a P_r -ring. Consider, for example, the ring R of all matrices of the form

$$\begin{pmatrix} a+c & 0 \\ b & c \end{pmatrix}$$

where $c \in F$, a field, and $a, b \in xF[x]$. Since the 2×2 matrix ring $(F(x))_2$ is a quotient ring of R, we must have $R_r^{\triangle} = 0$ and r(R) = 2. Every atom of L_r^* contains elements of rank 1 and the only element of L_r^* of rank 2, R, has a unity and hence contains an element of rank 2. Thus, R is an I_r -ring. However, R is not a P_r -ring since $A = e_{21}R$ is an atom of L_r^* such that $A^2 = 0$.

The ring R of $n \times n$ triangular matrices over a field is an example of a P_r -ring (and P_l -ring) which is not a principal right ideal ring. However, R is a Baer ring; i. e., every annihilating right ideal of R is generated by an idempotent. In this example, L_r^* is precisely the set of annihilating right ideals.

Let R be an F_r - and F_l -ring, R_r^0 be the union in L_r of the atoms of L_r^* , and R_l^0 be the corresponding union in L_l^* . The ring R is called *stable* in [5] if $(R_r^0)^r = (R_l^0)^l = 0$. It is proved in [5; 3. 1] that if R is stable then the lattices L_r^* and L_l^* are dual isomorphic under the correspondence $A \to A^l$, $A \in L_r^*$. Hence, r(R) = l(R) if R is stable.

Theorem 4. If R is a stable ring, then r(x) = l(x) for every $x \in R$.

PROOF. By Theorem 1, $r(x) = r(R) - r(x^r)$. Since $x^{rl} = (Rx)^*$ and $r(x^r) =$ $= r(R) - l[(Rx)^*]$ by the dual isomorphism between L_r^* and L_l^* , we have r(x) = $= l[(Rx)^*] = l(x)$ as desired.

References

- [1] Y. UTUMI, On complemented modular lattices meet-homomorphic to a modular lattice, Kodaî
- Math. Sem. 4 (1952), 99-100.
 [2] R. E. JOHNSON and E. T. WONG, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
- [3] R. E. Johnson, Quotient rings of rings with zero singular ideal, *Pacific J. Math.* 11 (1961), 1385-1392.
- [4] R. E. JOHNSON, Potent rings, to appear.
- [5] R. E. JOHNSON, Rings with zero right and left singular ideal, to appear.

(Received January 28, 1964.)