Rings of finite rank

By R. E. JOHNSON (Rochester, N. Y.)

Let R be a ring and L, = L_(R) be its lattice of right ideals. The right rank of
R. r(R), is defined to be max. card S, where S~ is an independent subset of L,.
The left rank of R, [(R), is defined similarly. If R is a zero ring, then r(R)=I(R) =k
where k is the usual rank of an Abelian group. Our remarks are restriced in this
note to rings of finite right rank.

Associated with the lattice L, of ring R is another lattice L, defined as follows.
For A, B€L,, let A<’ B signify that B is an essential extension of 4: thatis, A— B
and AN C#0 whenever BN C =0, CeL,. Define the relation ~ in L, by: A~ B
iff ANB—’'A and A B<’B. It is readily shown that ~ is an equivalence relation.
Let L; =L,/~ and ¢ be the natural mapping of L, onto L;. If the partial ordering
= is defined in L; by: ¢gA=¢B iff A(1B<"A, then Utumi showed in [1] that L,
is a complemented modular lattice. Furthermore, he showed that ¢ is a meet homo-
morphism of L, onto L;. Evidently ¢0={0} and ¢yR={A€L, /A< R)}. It may be
shown that ¢(AUB)=g¢gA ¢B if A(NB=0. From these remarks, it is clear that
S+ in L, iff (¢S)* in L;. Consequently, r(R) is simply the dimension of lattice
L;. Hence, r(R)=card S*“ where S$* is any maximal independent subset of L,.

Each right ideal A of ring R has a rank defined by r(A)=dim (¢gA) in L,.
The right rank of an element x of R, r(x), is defined to be r(A4) where A is the right
ideal of R generated by x. It is evident that

r(xy) = r(x), rix+y) =r(x)+r(y)
for all x, y€R.

It does not seem possible to say much about the rank of the elements of a
general ring of finite rank. However, if we assume that R has zero singular ideal.
R% =0, then some of the familiar properties of rank hold. We recall that R =
= {x€R|x" <’ R}, where x* is the right annihilator of x in R. Let us call R an F,-
ring if R has finite right rank and R> =0. For an F,-ring R, it is easily shown that
r(x)=r(xC) for every xR and every C€L, such that C='R.

If R is an F,-ring, then each A€ L, has a unique maximal essential extension
A* €L,, called the closure of A. The set Ly of all closed right ideals of R is a lattice,
which is easily shown to be isomorphic to L;. In fact, ¢4 ={BcL |BZ="A*} for
each A€L,. Thus, r(x)=r(xR)=dim (xR) in L;. Since x"¢ L} for each x¢R,
and a maximal complement of each A€ L, is in L, it is evident that r(R) =1 iff
R is a right Ore domain.

Theorem 1. If R is an F,-ring, then r(x) = r(R)—r(x") for every x€ R.
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PROOF. Let 4 be a complement of x* in LY and {A4,, ..., 4,} be an atomic
basis for A. Since {xA4,,...,xA,}", evidently r(x)=k =r(R)—r(x"). If
{xB,, ..., xB,}|™, where each B, is an atom of L}, and if B = B, +... +B,, then
BNx"=0. Forif b = b, +...+b,€x", b;€ B, then xb= 2 xb;=0 and xb; =0 for
each 7. However, x" 1 B; =0 by assumption, and therefore b,=0 for each / and
b =0. Thus, B is contained in a maximal complement of " and »n = k. Consequently,
r(x)=k and the theorem is proved.

Since (xy)" =", evidently

rxy)=r(y)

for all x,y in an F,-ring by Theorem 1.

Theorem 2. If R is an F,-ring and x, y€ R are such that xR\ yR = 0, then
r(x+y)=r(x). If, furthermore, x* +y" —'R then r(x+y) = r(x)+r(y).

ProOF. If r(x)=k and {x4,, ...,: xA,}*=, A; atoms of L}, then {(x+y)4,, ...
vy (X+Y)A ). For if 2 (x+y)a; =0, a;€A;, then 2 xa; =— 3 ya;=0 and
xa; =0 for each /. Hence, a;=0 for each i. Therefore, r(x+y) = r(x).

To prove the second part, let B and C be relative complements of x" ()" in

x and )", respectively, and let {B,, ..., B;}, {C,, ..., Cn}, and {D,, ..., D,} be
atomic bases of B, C, and x" ()", respectively. If B = B, +...+B,, C' = C, +...
...+C,, and D' =D;+..+D,, then B+C+Dc’R and r(x+y) =
= rl(x+y)(B'+ C'+ D)) = rl(x+y)(B + C)). Since (x+»B'=yB and

x+y)C" = xC’, evidently (x+y)B'N(x+y)C" = 0. Hence, r(x+y) = k+m =
=(k+m+n—k—-n)+k+m-+tn—m—n) = r(x)+r(y) in view of Theorem 1.
This proves Theorem 2.

If Ris an F,-ring and U= {uc RuR—'R}, then U is a multiplicative semi-
group by [2: 3.2]. Also, by [2; 3. 3], u" =u' =0 for every u€ U. Since (ux)"=x" for
all ue U and x € R, evidently r(ux) =r(x). If r(x) =k and {xA4,, ..., xA,}*, 4; atoms
of L7, then for each u< U we can select B;< L, such that uR (| A;=uB,; for each i.
Since (uB;)* = A;, evidently xuB,; #0 for each i. Consequently, r(xu) =k. We have
proved that

rlxu) =r(ux)=r(x)
for all xé R and ue U.

Let us call an F,-ring R an [, -ring if every A€ L} contains an element a such
that aR—’A. Thus, an [, -ring is a generalization of a principal right ideal ring.
If Ris an /,-ring then for each A€ L}, r(A) =r(a) for some a € A. In particular, U # ¢
foran /,-ring. If {R,, ..., R,} is a set of /,-rings, then their direct product R, X ... X R,
is easily seen to be an /,-ring. Also, if Q is a (right) quotient ring of an /,-ring R
(so that R R =0 for each nonzero g< Q), then Q is an /,-ring (see [3]).

An F -ring is called (right) irreducible [3] iff {0, R} is the center of lattice Lj.
If R is not irreducible, then the center C; of Ly is a Boolean algebra and each atom
of C7 is an irreducible ring. If { S, ..., S, ] is the set of atoms of C7 and § = S, + ...
... + 8§, (a direct sum), then R is a quotient ring of S. Evidently R is an /,-ring iff
every S; is an /,-ring. Thus, the problem of describing 7,-rings reduces to that of
describing irreducible 7, -rings.
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In a forthcoming paper [4],an F,-ring R is called right potent iff 42=0 for every
atom A€ L7, This is equivalent to saying that no nonzero ideal of Lf is nilpotent.
Let us call a right potent, irreducible F,-ring a P,-ring.

. Theorem 3. If R is a P,-ring, then each A< L7 contains an element a such that
ALl =R,

Proor. The notation |’ is used for a direct union in lattice L7. Let r(R)=n.
If n=1, then R is a right Ore domain and the theorem is trivially true. So let us
assume thatn =1.If A< L} isanatom, sothatr(4A)=1.then AN A" =0and ANa =0
for some nonzero a€A. Since a" is a maximal element (= R) of L}, evidently
Al_a = R in this case.

Assume that the integer k =1 is chosen so that the theorem is true for every
element of LY of rank =k, and let A€ L%, r(4)=k. Select B~ L] such that B— A
and r(B) = k—1. By assumption, there exists some b€ B such that B jb =R.
Since r(b") = n—k+1 and B(b =0, evidently b* ' A=C where C is an atom
of L}. Let us select a nonzero ¢ € C such that ¢' (1C=0, and then let a = b =c.
Clearly bR ¢R=0 and also " +¢" = 'R. Hence. r(a) =k by Theorem 2. If x +y <=
€a"(I(B+C), with xéB and yeC, then (b+c)(x+y) =0 and b(x+y) =
=—c¢(x+y) = 0. Therefore, b(x+y) =0, bx=0, and x=0; and ¢y=0 and
y=0. We conclude that a" ((B+ C)=0 and consequently that a" " 4 =0. Hence.
a''jA=R. The theorem now follows by mathematical induction.

Corollary. If R is a P,-ring, then R is an I,-ring. In fact, for each A€ Ly there
exist ac A and beca" such that a+beU.

PROOF. Select a€A4 so that A ja"=R and b<a" so that a"\’jb"=R. Then
(a+b)y =a Nb =0 and a+beU by [2; 3. 4].
An I, -ring need not be a P,-ring. Consider, for example, the ring R of all matrices
of the form
atc 0
b ¢

where ¢ € F, a field. and a, b € xF[x]. Since the 2 X 2 matrix ring (F(x)), is a quotient
ring of R, we must have R> =0 and r(R)=2. Every atom of LT contains elements
of rank 1 and the only element of L7 of rank 2, R, has a unity and hence contains
an element of rank 2. Thus, Ris an /,-ring. However, Risnot a P,-ring since 4 =¢,,R
is an atom of L7 such that A?=0.

The ring R of n < n triangular matrices over a field is an example of a P,-ring
(and P;-ring) which is not a principal right ideal ring. However, Risa Baerring;
1. e., every annihilating right ideal of R is generated by an idempotent. In this example,
LY is precisely the set of annihilating right ideals.

Let R be an F,- and F,-ring, R? be the union in L, of the atoms of L7, and
R} be the corresponding union in Li. The ring R is called stable in [5] if (R°) =
=(R}) =0. It is proved in [5; 3. 1] that if R is stable then the lattices L} and Lf
are dual isomorphic under the correspondence A —~A', A€ L}. Hence, r(R)=I(R)
if R is stable.

Theorem 4. If R is a stable ring, then r(x)=1I(x) for every x€R.
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Proor. By Theorem 1, r(x) = r(R)—r(x"). Since x" =(Rx)* and r(x") =
= r(R)—I[(Rx)*] by the dual isomorphism between L} and Lf, we have r(x)=
=I[(Rx)*] =I(x) as desired.
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