297

Asymptotic distribution of zeros of exponential sums

By D. G. DICKSON (Ann Arbor. Michigan)

1. Introduction

This study is concerned with the distribution in the complex plane of the zeros
of an exponential sum of the form

n
[]) f(:) o 2‘ Aj:mj“ _,_sj(:}]emj:
Jj=1
where n=1: the A4; and w; are complex numbers such that 4, =0 and the w; are
distinct: the m; are non-negative integers: the functions &; are analytic for |z/ =r;, =0
with lim &(z) =0. For r =r;, let n(r) denote the number of zeros of fhaving modulus

in the interval (r,, r], each zero being counted according to its multiplicity. Let L
be the perimeter of the convex hull Q of the set {@;]}7.,, where L is to be taken as
twice the length of Q if Q reduces to a line segment. If /'is entire, Q is the indicator
diagram of f. The most important special case of (1) is

n
2) @ = 23 P(2)ees,
=
where the P; are polynomials that are not identically zero. In this case we may let
ro=0.
Professor TURAN has pointed out that PoLyA [7. p. 594] stated that for (2)

(3) n(r) = Lr/(2r)+ O(1),

while indicating that no formal proof had been given up to that time. The purpose
of this paper is to show that (3) holds for functions of the form (1).

In [6], Polya established (3) with O(1) replaced by O(log r) for the case (2)
and has since then sketched an unpublished proof of (3) for this case, the proof
being based on the work of SCHWENGELER [8]. Schwengeler himself showed that
(3) followed for the special case of (2) which occurs when f is asymptotically an
exponential sum involving exactly two ;s in the logarithmic strips (to be described)
that contain the zeros of f. In the case that the P; are constants and the w; are real,
(3) follows from the work of C. E. WiLDER [11, pp. 420-422]. A proof of (3) when
the m; are zero and the coefficients are asymptotically constant is sketched by
TAMARKIN in [9]: the proof is based on his work in [10]. LEVIN [5, p. 297] shows
that (3) holds for a general class of functions which, while not including all functions
of the form (2). does include such functions for which the P; are constants. Roughly.
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Levin's functions are limits in an appropriate topology of functions of the form
ZA exp (w;z) where Z|A ;| == and the w; are bounded.

s

As shown by LANGER in [4], the study of (1) can be reduced to the study of (2)
where the P; are constants and the w; are real. The result of Wilder that implies
(3) in this special case was used by the author in [2] to obtain a similar result con-
cerning the distribution of zeros of (1). Here, we apply that result to obtain (3) for
functions of the form (1). We state the result as a theorem.

Theorem. If f is an exponential sum of the form (1), then n(r) =Lr/(27n) - O(1).

The studies mentioned above are all concerned with the distribution of zeros
of large modulus, and the techniques employed are similar. Using quite different
techniques, DaNcs and TURAN [1] have obtained an upper bound on the number
of zeros of (2) in a square of side S, the bound depending upon the maximum degree
of the polynomial coefficients, n, S, max |w; —w;|. and min |w; —w;| where i#.
In particular, the bound is independent of the coefficients in the polynomials, and
a simple translation argument shows that the result holds for al/l squares of side
S in the plane.

2. Preliminaries

Let / be given by (1). It has been shown (for example, see [3, p. 15]) that all
but a finite number of the zeros of / of large modulus greater than r, are contained
in a finite number (at most n) of strips of bounded width with boundary curves
asymptotically logarithmic. Each strip tends to infinity in a direction that is asympto-
tically logarithmic to an exterior normal to Q. Several strips may be associated with
each such normal direction. There exists a K=0, depending only on f. such that
these strips may be given in the form

l)‘

, = {z; J(ze~"®») =0, | R(ze~"®r) + p,log |z|| = K},

p=1,...,m=n; where the @, are in [—n/2, 3n/2), and the p, are real. The @, are
arguments of differences of consecutive vertices of Q and are not necessarily mutu-
ally distinct. The subsets of the ¥V, containing z’s of sufficiently large modulus are
individually connected and mutually disjoint with respect to p. These facts can
easily be verified using the simplified notation of the next section.

For each p=1, ..., m let
F,(2) = J(ze~®r)+ p,argz, where argze(®P,, ¢,+m),
E (2) = R(ze~'®)+ pu,log |z|.
For each pair of real numbers («, 5) with s =0, let
R)(%,5) = {z;a= F(2)sa+s, |[E() =K}

We will examine such sets more closely in the next section. If 7 is a set in the plane,
N(T) will denote the number of zeros of /. counted according to their multiplicities,
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in T. It follows from Theorem 2 of [2], that there is an %, =0 and numbers L,=0

n
with > L,=L such that whenever x=%, and s=>1,
p=1

(4) IN(R,(2, 5)) —sL,/(2n)| < n.

The sum of the L, associated with a single exterior normal to Q is the length of the
corresponding side of Q. The theorem actually provides a better bound which
depends on p, but this fact will not be of use to us here.

3. Proof of the theorem

Initially we will examine sets V), and R,(x. s) for a fixed p using a change of
variable. Let 2" = x"+iy’ = zexp(—i®,), and then suppress the primes in the
notation. ¥, and R,(x, s) then have the forms
V, = {z; y=0, [x+pu, log |z|| =K}

r
R(2,5) = {z:0=y+pu,(P,+argz)=a+s, |x+p,log |z]| = K},

where arg z is in (0, 7). 1t is easy to verify [3, p. 28] that |y/x| -~ and argz ~n/2
as z—-==in V,. From these observations we note that the curves x +u, log [z| = £ K
are asymptotic to the curves x +pu, logy = + Kand that the curve y + u,(®,+argz) =y
is approximated by y + u (@, + n/2) = 7 if y is large. The set R,(«, s) is then approxi-
mately a rectangle of dimensions 2K by s if « is large. If x is large, R (%, 5) = V,,.

We assert that there exists an r; =0 such that if g =r, and z is in V,, then
|zl>¢ when y+p,(argz—n/2) = o+1 and |z|<p when y+pu,(argz—n/2) =
= o — 1. In the respective cases,

z| = [uy(n/2 —arg z) + o £ 1][1 + (x/y)*]".

Since |x/y| 0 and arg z +n/2 as z = in V,, the assertion follows. Returning to
our original notation and letting v, = u,(®,+n/2), if ¢=>r, and z is in V,, then
z =g when Fy(z)—v, = o+1 and |z| <¢ when F/(z)—v, = ¢—1. Since there
are only finitely many p, r, may be chosen independently of p.

Choose r, sufficiently large so that r, =ry, ry=r,, and the subsets of the V,
composed of points of modulus greater than r, are individually connected and
mutually disjoint with respect to p. Choose 2, so that a; =a, and o; =r, +v,+ 1
for all p. By the choice of r,, it follows that each point of R, (x;,s) is of modulus
greater than r,. For if F(z) = y=x,, then with ¢ =y —v,—1=r,, it follows that
= =y=v,—1=r,. By the choice of r,, such R,(x, s) are disjoint with respect to p.

Choose an r; so that ry =, —v,+ 1 for all p. For r =rj, define C,(r) to be the
set of all z in ¥, for which F,(z) =%, and |z| =r. Then, except for a bounded number
of zeros of f. each zero of f with modulus in (r, ] is in precisely one C,(r). For
r>ry, let R = R(ay,r+v,—2,—1) and R” = R,(ay,r+v,—a,+1). Then for
r=ry, we assert that R"= C,(r) = R". For if z is in R’, then F,(z)=7y where y is in
%, r+v,—1). With ¢ = y—v,+1>a,—v,+1>r,, it follows that |z| <y—v,+
—1=r, and z is in C,(r). To establish the second inclusion it suffices to show that
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if F(z) =y=r+v,+1, then z|=r. With ¢ = y—v,—1=r, it follows that if

+1, then |z|=3—v,—1=r. As a result,

’ =Py

(

P

) N(R)= N(Cr) = N(R").

h

Applying (4) with 2 = r+v,—1 and s=2 when r=r;, we have
IN(R)(r+v,—1,2))—L,/r|<n.

Hence N(R,(r+v,—1,2)) is bounded uniformly in r, and a fortiori the number

g of zeros on its boundary along F,(z) = r+v,—1 is similarly bounded. Since

N(R)+N(R(r+v,—1.2))—qg = N(R"), it follows that N(R’) = N(R")+O(1).
From (5) it then follows that

(6) N(C,(r)) = N(R")+0(1).
Applying (4 with 2=z, and s = r+v,—2, +1 when r=r;,

N(R")—(r+v,—2, + ) L,/2n)| <n
and
N(R") = rL,/(2n)+ O(1).

Combining this with (6) and then summing over p. we obtain

.:\-'('(",{r)) = rL,/(2rn)+ O(1),
and
n(r) = rL/2r)+0(1).

The writing of this paper was supported in part by a grant from the National
Science Foundation.
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