On the difference between consecutive numbers prime to n: II

By CHRISTOPHER HOOLEY (Durham)

1. Introduction

We return to the topic of the distribution of the numbers $a_1, ..., a_{\varphi(n)}$, which as in the previous paper¹) of the same title are defined to be (in ascending order) the $\varphi(n)$ numbers not exceeding n that are prime to n. Previously¹) it was shewn that the intervals

$$\Delta_i = a_{i+1} - a_i$$

satisfied the inequality

(A)
$$\sum_{i=1}^{\varphi(n)-1} \Delta_i^{\alpha} = O\left\{n\left(\frac{n}{\varphi(n)}\right)^{\alpha-1}\right\}$$

for²) $1 \le \alpha < 2$. Here we shall study the intervals in a different aspect by considering how for each n the values of Δ_i are distributed statistically. Our main conclusion, which is embodied in Theorem 1, is that the ratio

$$\frac{\Delta_i}{n/\varphi(n)}$$

is distributed approximately as a gamma variable with parameter 1, provided n is to be regarded as tending to infinity through a sequence for which $n/\varphi(n)$ also tends to infinity. The distribution of $\Delta_i \varphi(n)/n$ for each n is thus essentially independent of n when $n/\varphi(n) \to \infty$, as had been conjectured earlier by P. Erdős³) for the special case where n was a product 2. 3. ... p of consecutive primes.

A consequence of Theorem 1 is that the inequality (A) can be replaced by an asymptotic formula when $n/\varphi(n) \to \infty$. This formula is stated without proof in Theorem 2.

¹⁾ On the difference of consecutive numbers prime to n, Acta Arith, 8, (1963), 295-299.

 ²⁾ This inequality can be seen to be also valid for 0≤α<1 by the use of Hölder's inequality.
 3) P. Erdős, Some unsolved problems, Magyar Tud. Akad. Kutató Int. Közl. 6 (1961), 221 –
 254.

2. Notation

The following notation will be adopted throughout.

The letters $d, d_1, l_i, \lambda_i, r, s, t$ are positive integers, where r satisfies the condition $2 \le r \le s$: b_i, B_i, m are non-negative integers: p is a (positive) prime number.

The integer n is to be regarded as tending to infinity through a sequence of values for which $n/\varphi(n)$ also tends to infinity, all (appropriate) inequalities that are valid for sufficiently large $n/\varphi(n)$ being assumed to hold. The variable c belongs to a range \Re of values that is bounded at each end by positive constants.

The constants implied by the O notation need depend at most on \Re and s (initial dependence on r being replaced by that on s in view of the inequality $2 \le r \le s$). The notation k = o(|h|) denotes a relation of the form

$$k = \varepsilon(n) |h|$$
,

where $\varepsilon(n) \to 0$ as $n \to \infty$ through the appropriate sequence, the passage to the limit being

(i) in Section 4 uniform with respect to $l_1, l_2, ..., l_{r-1}$ provided $0 < l_1 < l_2 < ...$ $... < l_{r-1} < y$

(ii) before equation (23) not necessarily uniform with respect to \Re and s (but being uniform with respect to c in a given \Re)

(iii) in equation (23) not necessarily uniform with respect to \Re (s being no longer present)

(iv) in Theorem 2 not necessarily uniform with respect to α.

The letters A, B indicate functions (of the appropriate variables) that are bounded by absolute constants; D is an absolute constant.

3. Formula for $f_n(c)$

The ultimate aim is to determine an asymptotic formula for $f_n(c)$, which we define to be the number of differences

$$\Delta_i = a_{i+1} - a_i, \qquad 0 < i < \varphi(n),$$

for which

$$\Delta_i < y = \frac{cn}{\varphi(n)}.$$

We begin by proving a preliminary formula for $f_n(c)$.

It is convenient to extend the definition of the numbers a_i by defining, generally, for any positive integer i (whether less than $\varphi(n)$ or otherwise), a_i to be the ith positive integer prime to n. We then define $g_n(c)$ like $f_n(c)$, except that the condition $0 < i < \varphi(n)$ is to be replaced by $0 < i \le \varphi(n)$. Since in fact $a_{\varphi(n+1)} = n+1$ and y > 2, we see that

(1)
$$f_n(c) = g_n(c) - 1.$$

To obtain an expression for $g_n(c)$ we define

$$N_r(n, y) = N_r(y) = N_r$$

to be the number of sets of r numbers $a_{i_1}, a_{i_2}, ..., a_{i_r}$ satisfying the conditions

$$a_{i_1} < a_{i_2} < \dots < a_{i_n}; \ a_{i_n} - a_{i_1} < y; \ 0 < i_1 \le \varphi(n).$$

Then, by an application of a well known exclusion principle, as used for example in Brun's sieve method, we have

$$g_n(c) \leq N_2 - N_3 + \dots + (-1)^t N_t$$

if t be even, and

$$g_n(c) \ge N_2 - N_3 + \dots + (-1)^t N_t$$

if t be odd, from which we deduce by using (1)

(2)
$$f_n(c) = N_2 - N_3 + \dots + (-1)^{s-1} N_{s-1} + A N_s - 1.$$

4. Estimation of N,; first stage

For any set of integers $l_1, l_2, ..., l_{r-1}$ such that $0 < l_1 < l_2 < ... < l_{r-1}$ we denote by $F(l_1, l_2, ..., l_{r-1})$ the number of values of m in the range $0 \le m < n$ for which the numbers $m, m+l_1, ..., m+l_{r-1}$ are all prime to n. Then

(3)
$$N_r = \sum_{0 < l_1 < \dots < l_{r-1} < y} F(l_1, \dots, l_{r-1}).$$

Next we evaluate $F(l_1, ..., l_{r-1})$ by the sieve of Eratosthenes. Since the set $m, m+l_1, ..., m+l_{r-1}$ contributes to $F(l_1, ..., l_{r-1})$ if and only if

$$(m\{m+l_1\}...\{m+l_{r-1}\},n)=1,$$

we have

$$F(l_1, ..., l_{r-1}) = \sum_{\substack{0 \le m < n \ d \mid m(m+l_1)...(m+l_{r-1}) \\ d \mid n}} \mu(d) =$$

$$= \sum_{d|n} \mu(d) \sum_{\substack{m(m+l_1)... (m+l_{r-1}) \equiv 0 \pmod{d}}} 1 = n \sum_{d|n} \frac{\mu(d)}{d} v(d; l_1, ..., l_{r-1}),$$

where, for any set 4) of integers $b_1, ..., b_{r-1}, v(d; b_1, ..., b_{r-1})$ is the number of roots of the congruence

$$m(m+b_1)...(m+b_{r-1}) \equiv 0 \pmod{d}$$
.

Since $v(d; b_1, ..., b_{r-1})$ is a multiplicative function of d, that is to say, if (d', d'') = 1, then $v(d'; b_1, ..., b_{r-1})v(d''; b_1, ..., b_{r-1}) = v(d'd''; b_1, ..., b_{r-1})$, we conclude that

(4)
$$F(l_1, ..., l_{r-1}) = n \prod_{p \mid n} \left(1 - \frac{v(p; l_1, ..., l_{r-1})}{p} \right) = n \Pi_1,$$

say.

It should be remarked here that for any prime number $p \ v(p; b_1, ..., b_{r-1})$ admits of the alternative interpretation as the number of distinct residues (mod p) in the system $0, b_1, ..., b_{r-1}$.

⁴⁾ The definition of $v(d; b_1, ..., b_{r-1})$ will be required later for the case in which the restrictions $b_i \neq b_j$ and $b_i \neq 0$ do not apply.

The formula obtained above for $F(l_1, ..., l_{r-1})$ is not suitable in its present form for the estimation of N_r . It is first necessary to derive from it a modified and approximate formula by writing the product Π_1 as

(5)
$$\Pi_1 = \prod_{p \le Y} \prod_{p > Y} = \Pi_2 \Pi_3,$$

say where 5)

$$Y = \frac{\log y}{(\log \log y)^{\frac{1}{2}}}.$$

We consider Π_3 by writing it as

(6)
$$\Pi_3 = \prod_{(A)} \prod_{(B)} = \Pi_4 \Pi_5,$$

say, where (A) indicates that the product is over the (appropriate⁶) primes p for which $v(p; l_1, ..., l_{r-1}) < r$, and (B) indicates that the product is over the (appropriate) primes p for which $v(p; l_1, ..., l_{r-1}) = r$.

To investigate Π_4 let ϱ be the number of primes p for which p > Y and $v(p; l_1, ..., l_{r-1}) < r$ but not subject to any other restrictions. Then since any such prime divides the non-vanishing product

$$l_1 l_2 \dots l_{r-1} \prod_{i < j \le r-1} (l_j - l_i),$$

we have

$$Y^{\varrho} < l_1 l_2 ... l_{r-1} \prod_{i < j \le r-1} (l_j - l_i) < y^{r^2},$$

and therefore

$$\varrho = O\left(\frac{\log y}{\log Y}\right).$$

Next, by this and the definition of (A), we have⁷)

$$1 \le \frac{\Pi_4}{\prod_{(A)} \left(1 - \frac{r}{p}\right)} \le \prod_{(A)} \left(1 - \frac{r}{p}\right)^{-1} \le \left(1 - \frac{r}{Y}\right)^{-e} = 1 + O\left(\frac{\log y}{Y \log Y}\right) = 1 + O\left(\frac{1}{(\log \log y)^{\frac{1}{2}}}\right) = 1 + o(1).$$

Therefore, by this and (6), we have

(7)
$$\Pi_{3} = \{1 + o(1)\} \prod_{(A)} \left(1 - \frac{r}{p}\right) \prod_{(B)} \left(1 - \frac{r}{p}\right) = \{1 + o(1)\} \prod_{\substack{p \mid n \\ p > Y}} \left(1 - \frac{r}{p}\right).$$

⁵⁾ The precise value of Y being not important here, we choose one that is convenient.

⁶⁾ i. e. those primes p for which p|n, p>Y, and $v(p; l_1, ..., l_{r-1}) < r$.
7) The relationship between the orders of magnitude of y, Y, and ϱ makes the subsequent estimation of $\left(1 - \frac{r}{Y}\right)^{-p}$ valid.

Finally, since

$$\left(1 - \frac{r}{p}\right) \left(1 - \frac{1}{p}\right)^{-r} = 1 + O\left(\frac{1}{p^2}\right)$$

for p > Y, we have

$$\begin{split} \prod_{\substack{p \mid n \\ p > Y}} \left(1 - \frac{r}{p}\right) &= \prod_{\substack{p \mid n \\ p > Y}} \left(1 - \frac{1}{p}\right)^r \prod_{\substack{p \mid n \\ p > Y}} \left\{1 + O\left(\frac{1}{p^2}\right)\right\} = \left\{1 + O\left(\frac{1}{Y}\right)\right\} \left\{\prod_{\substack{p \mid n \\ p > Y}} \left(1 - \frac{1}{p}\right)\right\}^r &= \left\{1 + O\left(\frac{1}{Y}\right)\right\} \psi_Y^r(n), \end{split}$$

say, and therefore from this and (7),

(8)
$$\Pi_3 = \{1 + o(1)\} \psi_Y'(n).$$

The combination of (5) and (8) gives the required formula for $F(l_1, ..., l_{r-1})$. Writing now

$$\Pi_2 = G(l_1, ..., l_{r-1})$$

to indicate the dependence of Π_2 on $l_1, ..., l_{r-1}$, we have, by (3), (4), (5), (8), and note (i) in Section 2,

(9)
$$N_{r} = n\{1 + o(1)\} \psi_{Y}^{r}(n) \sum_{0 < l_{1} < \dots < l_{r-1} < y} G(l_{1}, \dots, l_{r-1})$$
$$= n\{1 + o(1)\} \psi_{Y}^{r}(n) \Sigma_{r,y}, \text{ say.}$$

In the next section we proceed to the estimation of $\Sigma_{r,y}$.

5. Transformation of $\Sigma_{r,v}$

In order to examine $\Sigma_{r,y}$ let d_1 indicate, generally, either 1 or square-free numbers composed entirely of prime factors p such that $p \leq Y$. A bound for numbers of this type will be needed, and is easily obtained. In fact

$$d_{1} \leq (Y)^{\pi(Y)} < Y^{\left(\frac{2Y}{\log Y}\right)} = e^{2Y}$$

$$= e^{\frac{2\log y}{(\log\log y)^{\frac{1}{2}}}} = y^{\frac{2}{(\log\log y)^{\frac{1}{2}}}}.$$

Hence

(10)
$$d_1 < Z$$
, where $Z = y^{\frac{2}{(\log \log y)^{\frac{1}{2}}}} < y$.

Now

$$G(l_1, ..., l_{r-1}) = \sum_{d_1|n} \frac{\mu(d_1)}{d_1} v(d_1; l_1, ..., l_{r-1}).$$

Therefore

(11)
$$\Sigma_{r,y} = \sum_{0 < l_1 < \dots < l_{r-1} < y} \sum_{d_1 \mid n} \frac{\mu(d_1)}{d_1} v(d_1; l_1, \dots, l_{r-1}) = \sum_{d_1 \mid n} \frac{\mu(d_1)}{d_1} S(d_1, y),$$

where

$$S(d_1, y) = \sum_{0 \le b_1, \dots, b_{r-1} < d_1} v(d_1; b_1, \dots, b_{r-1}) \sum_{\substack{0 < \lambda_1 < \dots < \lambda_{r-1} < y \\ \lambda_1 \equiv b_1 \pmod{d_1}}} 1,$$

the variables of summation in the inner sum being denoted by λ_i instead of l_i , since we no longer wish them in the sequel to be necessarily restricted by the condition imposed at the beginning of Section 4.

We estimate $S(d_1, y)$ by adopting an artifice which may seem unnatural, but which obviates a complicated lattice point calculation. We consider the contribution $S'(d_1, y)$, say, to $S(d_1, y)$ due to all sets $b_1, ..., b_{r-1}$ in the outer sum which correspond to a fixed selection of r-1 numbers $\beta_1, ..., \beta_{r-1}$ (not necessarily all distinct). Letting Σ' indicate summation over all arrangements $b_1, ..., b_{r-1}$ of $\beta_1, ..., \beta_{r-1}$, we have that this contribution is given by

(12)
$$v(d_1; \beta_1, ..., \beta_{r-1}) \sum_{\substack{b_1, ..., b_{r-1} \\ \lambda_i \equiv b_i \pmod{d_1}}}' \sum_{\substack{0 < \lambda_1 < ... < \lambda_{r-1} < y \\ \lambda_i \equiv b_i \pmod{d_1}}} 1,$$

and then from the form of this expression we see that the condition $0 < \lambda_1 < ...$ $... < \lambda_{r-1} < y$ in the inner sum may be replaced by $0 < \lambda_{j_1} < ... < \lambda_{j_{r-1}} < y$, where $j_1, ..., j_{r-1}$ is a permutation of 1, ..., r-1. Therefore (12) may be replaced by

(13)
$$\frac{1}{(r-1)!} v(d_1; \beta_1, \dots, \beta_{r-1}) \sum_{\substack{b_1, \dots, b_{r-1} \\ 0 < \lambda_i < y \\ \lambda_i \neq \lambda_j \text{ if } i \neq j}} \sum_{1 \le b_i \pmod{d_1}} 1.$$

A simple argument shews that the inner sum in (13) is

 $\left(\frac{y}{d_1}+O(1)\right)^{r-1}$,

which is

$$\frac{y^{r-1}}{d_1^{r-1}} + O\left(\frac{y^{r-2}}{d_1^{r-2}}\right)$$

by (10); from this we have that (13) is

$$\left\{\frac{1}{(r-1)!} \frac{y^{r-1}}{d_1^{r-1}} + O\left(\frac{y^{r-2}}{d_1^{r-2}}\right)\right\} v(d_1; \beta_1, ..., \beta_{r-1}) \sum_{b_1, ..., b_{r-1}} 1.$$

Therefore

(14)
$$S(d_1, y) = \left\{ \frac{1}{(r-1)!} \frac{y^{r-1}}{d_1^{r-1}} + O\left(\frac{y^{r-2}}{d_1^{r-2}}\right) \right\} \sum_{0 \le b_1, \dots, b_{r-1} < d_1} v(d_1; b_1, \dots, b_{r-1}) =$$

$$= \left\{ \frac{1}{(r-1)!} \frac{y^{r-1}}{d_1^{r-1}} + O\left(\frac{y^{r-2}}{d_1^{r-2}}\right) \right\} M_r(d_1),$$

say. Returning to $\Sigma_{r,y}$ we have, by (11) and (14),

$$\Sigma_{r,y} = \sum_{d_1|n} \left\{ \frac{1}{(r-1)!} \frac{y^{r-1}}{d_1^{r-1}} + O\left(\frac{y^{r-2}}{d_1^{r-2}}\right) \right\} \frac{\mu(d_1)}{d_1} M_r(d_1) =$$

$$= \frac{y^{r-1}}{(r-1)!} \sum_{d_1|n} \frac{\mu(d_1) M_r(d_1)}{d_1^r} + O\left(y^{r-2} \sum_{d_1|n} \frac{|\mu(d_1)| M_r(d_1)}{d_1^{r-1}}\right) =$$

$$= \frac{y^{r-1}}{(r-1)!} \Sigma_1 + O(y^{r-2} \Sigma_2),$$

say.

6. The multiplicativity of $M_r(d)$

The next step in the estimation of $\Sigma_{r,y}$ depends on the property that $M_r(d)$ is a multiplicative function of d.

If (d', d'') = 1, then from the definition of $M_r(d)$

(16)
$$M_r(d') M_r(d'') = \sum_{\substack{0 \le b'_1, \dots, b'_{r-1} < d' \\ 0 \le b''_1, \dots, b''_{r-1} < d''}} v(d'; b'_1, \dots, b'_{r-1}) v(d''; b''_1, \dots, b''_{r-1}).$$

For each set $b'_1, ..., b'_{r-1}, b''_1, ..., b''_{r-1}$ occurring in the above sum, define $B_1, ..., B_{r-1}$ by the conditions

$$B_i = \begin{cases} b_i' \pmod{d'} \\ b_i'' \pmod{d''} \end{cases} ; \quad 0 \le B_i < d'd''.$$

The summand in (16) becomes

$$v(d'; B_1, ..., B_{r-1})v(d''; B_1, ..., B_{r-1}) =$$

= $v(d'd''; B_1, ..., B_{r-1}),$

since $v(d; B_1, ..., B_{r-1})$ is a multiplicative function of d; while, as $b'_1, ..., b'_{r-1}, b''_1, ..., b''_{r-1}$ vary, each set of $B_1, ..., B_{r-1}$ satisfying

$$0 \leq B_1, \dots, B_{r-1} < d'd''$$

is obtained exactly once. Therefore

$$M_r(d')M_r(d'') = \sum_{0 \le B_1, \dots, B_{r-1} < d'd''} v(d'd''; B_1, \dots, B_{r-1}) = M_r(d'd''),$$

as asserted at the beginning of the paragraph.

7. Estimation of Σ_2

For the assessment of Σ_2 we have

$$\Sigma_2 \leq Z \sum_{d_1|n} \frac{|\mu(d_1)| M_r(d_1)}{d_1^r},$$

by (10), and then, by the multiplicativity of $M_r(d)$,

$$\Sigma_2 \leq Z \prod_{\substack{p \mid n \\ p \leq Y}} \left(1 + \frac{M_r(p)}{p^r} \right).$$

Next, since

$$M_r(p) \leq rp^{r-1}$$
,

we have

$$\begin{split} & \Sigma_2 \leq Z \prod_{\substack{p \mid n \\ p \leq Y}} \left(1 + \frac{r}{p}\right) \leq Z \prod_{\substack{p \mid n \\ p \geq Y}} \left(1 + \frac{1}{p}\right)^r = O\left\{Z \prod_{\substack{p \mid n \\ p \geq Y}} \left(1 + \frac{1}{p}\right)^{2r} \prod_{\substack{p \mid n \\ p \geq Y}} \left(1 - \frac{1}{p}\right)^r\right\} = \\ & = O\left\{Z \prod_{\substack{p \leq Y \\ p \leq Y}} \left(1 + \frac{1}{p}\right)^{2r} \prod_{\substack{p \mid n \\ p \leq Y}} \left(1 - \frac{1}{p}\right)^r\right\} = O\left\{Z \log^{2r} Y \prod_{\substack{p \mid n \\ p \leq Y}} \left(1 - \frac{1}{p}\right)^r\right\}, \end{split}$$

by the Mertens formula. Therefore, by (10),

(17)
$$\Sigma_2 = o\left\{ y \prod_{\substack{p \mid n \\ p \equiv Y}} \left(1 - \frac{1}{p}\right)^r \right\}.$$

8. Estimation of Σ_1

We first express Σ_1 as a product by the formula

(18)
$$\Sigma_1 = \prod_{\substack{p \mid n \\ p \equiv Y}} \left(1 - \frac{M_r(p)}{p^r} \right),$$

and then evaluate $M_r(p)$. Recalling that $v(p; b_1, ..., b_{r-1})$ is the number of distinct residues (mod p) in the system $0, b_1, ..., b_{r-1}$, let $\Psi_r(p, k)$ be the number of such systems for which $v(p; b_1, ..., b_{r-1}) = k$ and $0 \le b_i < p$. Then, since

$$\Psi_r(p,k) = \frac{1}{p} \Phi_r(p,k),$$

where $\Phi_r(p, k)$ is the number of systems $b_1, b_2, ..., b_r$ ($b_i < p$) in which there are exactly k distinct residues (mod p), we have

(19)
$$M_r(p) = \frac{1}{p} \sum_{k=1}^{p} k \Phi_r(p, k),$$

there being in fact no contribution to $M_r(p)$ from the terms in the above sum for which k > r.

Next

$$\Phi_r(p,k) = \sum_{\alpha_1,...,\alpha_k} \sum_{b_1,...,b_r} 1 = \sum_{\alpha_1,...,\alpha_k} \Sigma_{\alpha_1,...,\alpha_k},$$

say, where the outer sum is over all combinations $\alpha_1, ..., \alpha_k$ of 0, 1, ..., p-1 taken k at a time, and the inner sum is over all arrangements $b_1, ..., b_r$ of $\alpha_1, ..., \alpha_k$ in which each value of α_i must occur at least once but possibly more than once. Since the inner sum depends only on k and r, we may write

$$\Sigma_{\alpha_1,\ldots,\alpha_k} = u_r(k),$$

and then

(20)
$$\Phi_r(p,k) = \begin{pmatrix} p \\ k \end{pmatrix} u_r(k).$$

Let $v_r(k)$ be defined like $u_r(k)$ as the number of arrangements $b_1, ..., b_r$ of $\alpha_1, ..., \alpha_k$, but without the restriction that each value of α_i must occur at least once as a b_j . Then, applying Legendre's exclusion principle, we infer that

$$u_r(k) = \sum_{t=0}^{k-1} (-1)^t \binom{k}{t} v_r(k-t).$$

But $v_r(k) = k^r$; therefore

$$u_r(k) = \sum_{t=0}^{k-1} (-1)^t \binom{k}{t} (k-t)^r,$$

and so $u_r(k)$ is the coefficient of x^r in the expansion of

$$r!(e^{x}-1)^{k}$$

in ascending powers of x. Hence, by (19) and (20), $M_r(p)$ is the coefficient of x^r in the expansion of

$$\frac{r!}{p} \sum_{k=1}^{p} k \binom{p}{k} (e^{x} - 1)^{k},$$

there being in fact no contribution to this sum from terms for which k > r. Since, for |z| < 1,

$$\sum_{k=1}^{p} k \binom{p}{k} z^k = pz(1+z)^{p-1},$$

we see that $M_r(p)$ is the coefficient of x^r in

$$r! e^{(p-1)x} (e^x - 1) = r! (e^{px} - e^{(p-1)x}),$$

and thus deduce that

$$M_r(p) = p^r - (p-1)^r.$$

Substituting this result in (18) we evaluate Σ_1 explicitly by the formula

(21)
$$\Sigma_1 = \prod_{\substack{p \mid n \\ p \leq Y}} \left(\frac{p-1}{p} \right)^r = \prod_{\substack{p \mid n \\ p \leq Y}} \left(1 - \frac{1}{p} \right)^r.$$

9. Estimation of N_r ; final stage

We estimate N_r by collecting together the results already obtained. We have, by (15), (17) and (21),

$$\Sigma_{r,y} = \frac{y^{r-1}}{(r-1)!} \left(1 + o(1) \right) \prod_{\substack{p \mid n \\ p \le Y}} \left(1 - \frac{1}{p} \right)^r,$$

and then, by this and (9),

(22)
$$N_{r} = n\{1 + o(1)\} \frac{y^{r-1}}{(r-1)!} \prod_{\substack{p \mid n \\ p \equiv Y}} \left(1 - \frac{1}{p}\right)^{r} \cdot \psi_{Y}^{r}(n) =$$

$$= n\{1 + o(1)\} \frac{y^{r-1}}{(r-1)!} \prod_{\substack{p \mid n \\ p \neq n}} \left(1 - \frac{1}{p}\right)^{r} = \frac{c^{r-1}}{(r-1)!} \varphi(n)\{1 + o(1)\}.$$

10. The distribution of the intervals

The theorem on $f_n(c)$ is an easy deduction from (2) and (22). We have, for any given integer s,

$$f_n(c) = \sum_{r=2}^{s-1} (-1)^r N_r + AN_s - 1 = \varphi(n) \left(-\sum_{r=2}^{s-1} \frac{(-c)^{r-1}}{(r-1)!} \right) + o\{\varphi(n)\} + A\{1 + o(1)\} \varphi(n) \frac{c^{s-1}}{(s-1)!} - 1.$$

Now, for $s > s_0(\Re)$,

$$\left| \sum_{m=s}^{\infty} \frac{(-c)^{m-1}}{(m-1)!} \right| \le \frac{c^{s-1}}{(s-1)!};$$

wherefore

$$f_n(c) = \varphi(n) \left(1 - e^{-c} + B \frac{c^{s-1}}{(s-1)!} \right) + o \{ \varphi(n) \} - 1,$$

and thus

$$\left| \frac{f_n(c)}{\varphi(n)} - (1 - e^{-c}) \right| \le D \frac{c^{s-1}}{(s-1)!} + o(1)$$

for any given $s > s_0(\Re)$, where it is to be noted that the left-hand side does not depend on s. Letting $n \to \infty$ through an sequence of values for which $n/\varphi(n) \to \infty$, we deduce

$$\overline{\lim_{n\to\infty}} \left| \frac{f_n(c)}{\varphi(n)} - (1-e^{-c}) \right| \leq D \frac{c^{s-1}}{(s-1)!}$$

for any fixed $s > s_0(\Re)$. Therefore, now taking s to be arbitrarily large, we have

$$\overline{\lim_{n\to\infty}}\left|\frac{f_n(c)}{\varphi(n)}-(1-e^{-c})\right|=0,$$

or, what is equivalent,

(23)
$$f_n(c) = \varphi(n)\{1 + o(1)\}(1 - e^{-c}).$$

We thus have the following theorem.

Theorem 1. Let $a_1, a_2, \ldots, a_{\varphi(n)}$ be, in ascending order of magnitude, the $\varphi(n)$ integers not exceeding n that are prime to n; let Δ_i be the length of the interval between a_i and a_{i+1} ; and let $f_n(c)$ be the number of intervals for which

$$\Delta_i < cn/\varphi(n)$$
,

where c lies in any fixed range \Re that is bounded at either end by positive constants. Then, as $n \to \infty$ through a sequence of values for which $n/\varphi(n) \to \infty$, we have

$$f_n(c) = \varphi(n) \{1 + o(1)\} (1 - e^{-c})$$

uniformly in R.

As stated in the introduction, our other theorem can be deduced from this by using the methods of the earlier paper 8).

Theorem 2. We have for $0 \le \alpha < 2$

$$\sum_{i=1}^{\varphi(n)-1} (a_{i+1}-a_i)^{\alpha} = \left\{1+o(1)\right\}\Gamma(\alpha+1)n\left(\frac{n}{\varphi(n)}\right)^{\alpha-1},$$

as $n \to \infty$ through a sequence of values for which $n/\varphi(n) \to \infty$.

(Received December 5, 1963.)