Cohesive groups and p-adic integers

By D. W. DUBOIS") (Albuquerque, N. M,)

§ 1. Introduction

The construction of indecomposable torsionfree Abelian groups of rank two,
due to PONTRIAGIN ([7]; see also [6] Theorem 19 and [2] p. 151) was generalized
by CORNER [8] p. 696 to obtain groups of rank ¢ =2%o, In § 3 present a construction
which slightly generalizes Corner’s, produces indecomposable torsionfree groups
of rank up to ¢, and uses an arbitrary set of primes. If this set is the set of all primes,
then the groups obtained have a property which was first noticed by SAsiIADA and
JAREK for pure subgroups of /(p), and which we call cohesiveness. This very strong
property is examined in § 2, where we show that every reduced cohesive group is
strongly and absolutely indecomposable and give in Theorem 1 a simple compu-
tational criterion for cohesiveness. A corollary is that the quasi-isomorphism class
of a cohesive group coincides with its isomorphism class.

Notation. For most terms see FUCHS [2] or KAPLANSKY [6]. Z is the additive
group of the rational integers, /(p) the additive group of all p-adic integers. For a
group or set S, | S| is the power or cardinal number of S. A subgroup K of a group
G is p-pure in G if and only if KMNp"G = p"K for n=0, 1,2, ...; K is pure in G if
and only if it is p-pure for every prime p. In case G is torsionfree and K is a subset
of G, then the pure (p-pure) closure of K in G is the intersection of all pure (p-pure)
subgroups containing K. A rigid system is a set S of torsionfree groups such that
for all A and B in S, Hom (A4, B) is zero if A # B, and Hom (A, A) has rank one.
The height of x at the prime p is denoted by H (x). See FucHs [2], § 42, for discussion
of heights and types in torsionfree groups.

§ 2. Cohesive groups

Definition. The torsionfree group G is cohesive if and only if for every non-
zero pure subgroup S of G, G/S is divisible.

First we give some useful lemmas and examples.

CI. Every divisible torsionfree group is cohesive.

C2. A cohesive group is either divisible or reduced and any reduced cohesive
group is indecomposable.
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C3. A torsionfree group G is cohesive if and only if every nonzero map of G
into a reduced torsionfree group is a monomorphism (zero kernel).

C4. If G H=G™ K, if G is cohesive, if K is torsionfree, and if G* is the
pure closure of G in K, then H is also cohesive. From this it follows readily that
cohesiveness is a quasiisomorphism invariant and that every reduced cohesive
group is strongly indecomposable.

C5. Every pure subgroup of a cohesive group is cohesive; thus a reduced
cohesive group is absolutely indecomposable, i.e., every pure subgroup is inde-
composable.

C6. I(p) is cohesive. For if S is a nonzero pure subgroup of /(p). then it is
immediately clear that S contains a unit; this implies /(p)/S is divisible.

C7. The union of a chain of cohesive subgroups of a torsionfree group is
cohesive.

C8. In a cohesive group all nonzero elements have types with the same set
of infinity places. For suppose that G is cohesive and that @ and ¢ are nonzero members
with H (a)==, H,(c)=0. Let A be the pure subgroup generated by a. Then G/A
is divisible, so p divides ¢+ A4 in G/A. This means that there is an x with px =
= c¢+da’,a" in A. Since every element in A has infinite height at p, p divides ¢" and
hence p divides ¢. This contradicts H,(c)=0. It follows that de Groot’s absolutely
indecomposable example G [4], § 7, is not cohesive; for in G there is a set a,, a,, ...
of elements with a; having infinite height only at the prime p;, where a; +p; is a
one to one correspondence.

C9. If Sisarigid system, none of whose groups is divisible by p, then the sub-
group G(S, a) of the direct sum 7= > A generated by p7 and all members of the

n AES
form > a(A;) where a is a fixed function on S with a(4) a member of A that is
i=1
not divisible by p, and 4,€S, is indecomposable (see HuLANICKI [5] and FucHs
[3]) but not cohesive. For the projection of G(S, @) onto a fixed A" in S induces
a nonzero map of G into A" that is not a monomorphism (unless S is a singleton
set). But A" is a reduced torsionfree group, so by C3 above, G(S, a) is not cohesive.

We shall need the following three trivial lemmas on p-adic integers.

Pl. If S is torsionfree and pS # S (where p is a prime), then there exist nonzero
maps of S into I(p). For let r =rank of S/pS. Then

Hom (S. I(p)) = Hom (S. Hom (Z(p~), Z(p™)))

&

Hom (S® Z(p~), Z(p~)) ~ Hom (3 Z(p~). Z(p~))
~ [ (Hom (Z(p), Z(p))) = I 1(p).

This 1s zero if and only if pS=S8.

P2. Every endomorphism of 7(p) is a multiplication by a fixed member of
I(p). See Fucss [2], p. 212.

P3. If S is p-pure in I(p), then every map of S into /(p) is the restriction of
an endomorphism of /(p) (ARMSTRONG [1]). Fuchs® argument cited above can be
generalized to prove this, as follows. Since S (assumed nonzero) is p-pure it contains
a unit w. If U is the subgroup generated by « then S/U is divisible by p, while 7(p)
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has no elements of infinite height at p. It follows readily that every map of S into
I(p) is determined by its value at « and the assertion is proved.

Now we are ready to prove a computational criterion.

Theorem 1. Let S be a torsionfree abelian group. The following are equivalent :
(a) S is cohesive (b) for every prime p, either S/pS is zero or S is isomorphic with
a p-pure subgroup of 1(p); (c) for every prime p, either S/pS is zero, or else S has no
elements of infinite height at p and S/pS is a cyclic group of order p; (d) for every
prime p, every nonzero map of S into I1(p) is a monomorphism.

PROOF. (i). If (a) then (b). Let S be cohesive and suppose pS # S. By P2, there
is a nonzero map ¢: S—/(p). By C3, ¢ is a monomorphism. Let the image of ¢
be written as p*S’, where S’ contains a unit u=w,+u,p+ ..., with uy#0. Then
S” is isomorphic with S. Let px belong to $*, with x in I(p), x = xop' +x, ' 4+ ...,
and x,#=0. Let X be the pure subgroup of S’ generated by px. Then S’/X is divi-
sible, so the coset u+ X is divisible by p. Then there is a rational r with rpx in §°
and u+rpx divisible by p in S’. Divisibility in /(p) implies r =k/(np'*"'), with k
and n integers prime to p. Hence kx =np'(rpx) belongs to S’. Take integers a and
b with ak +bp = 1, so that x = a(kx)+ b(px) belongs to S’. Thus S’ is p-pure
in I(p) and the first implication is proved.

(i1). If (b) then (c). Let S satisfy condition (b) and suppose pS = S. From (b)
we may assume that S is a p-pure subgroup of /(p). Then S has no elements of
infinite height at p since /(p) has none. If ¥ = wuy+u,p-+... is any unit in S then
u+pS generates S/pS. For given x in S choose m with mu, congruent to x, (mod p)
(m an integer). Then p divides x —nmu. This shows (c).

(iii). If (c) then (d). Let S satisfy condition (c¢) and let p be a prime. If pS=S§
ther: S has no nonzero maps into /(p) so we suppose that S/pS§ is cyclic, generated
by a+pS, and that S has no elements of infinite height at p. For every x in S a
sequence x; of members of S and a sequence n; of integers is uniquely determined
by the conditions: x = nga+px,,0=ng<p,x; = na+px;+,,0=m<p,i=1,2,....

k -
Then for every k, ,r:[ﬁr:ip‘]a+p*+‘.rk+l and the correspondence x - > n;p'
i=0

i=0
defines a homomorphism ¢ from S into /(p). The image of ¢ is p-pure in /(p) since
if py=x then x = 0-a+px, and x,¢ =y, and the kernel of ¢ is the set of all ele-
ments of infinite height at p, hence zero. In view of P2 and P3, the proof of (iii) is
complete.

(iv). If (d) then (a). Suppose that § satisfies (d), that ¢: S—T7 i1s a nonzero
epimorphism, and that 7 is a reduced torsionfree group. Since 7 is reduced there
is a prime p with p7 =T, and so there is a nonzero homomorphism : T —I(p).
Then gy: S—~1(p) is not zero. By (d), ¢ is a monomorphism; therefore ¢ is also
a monomorphism. This proves that S is cohesive, i. e.. condition (a). The theorem
is proved.

G is quasi-isomorphic with H if G is isomorphic with a subgroup H” of H which
contains a nonzero multiple mH of H.

Corollary. Let G be quasi-isomorphic with the cohesive group H. Then G is
isomorphic with H.
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PrROOF. Suppose mH — H'— H with m #0. If m is a prime then it follows imme-
diately from Theorem 1 (c) that H’ is either H or mH. An induction shows that in
any case H'=kH where k is a factor of m, and hence that H’ is isomorphic with H.

Note that the largest possible power of a reduced cohesive group is ¢ = 2%o,

For an example of a p-pure subgroup of /(p) that is not cohesive, let x and
» be independent in /(p), let ¢ be a prime different from p, and let G be the p-pure
closure in /(p) of the group generated by y ana all ¢="x, n=0,1,2,.... Then G
is not cohesive since x has infinite height at ¢ while y has finite height at g.

Theorem 2. Let A be a torsionfree reduced cohesive group of rank at least two.
Then A® A is not cohesive.

PrROOF. Let a and b be independent in A, and let F be the free subgroup of A4
generated by @ and b. Then the natural map of F®F into A@A is a mono-
morphism. In F® F the elements a@a.a®@b.b®a and b@b are independent
generators, so a®@b—-b®@a is not zero in A@A. Now choose a prime p so that
pA#A and choose g in A with g+ pA a generator of A/pA. This is possible by
Theorem 1 (note that A4 is assumed reduced). Let k be a positive integer. By the
construction in Theorem 1, part (iii), we can write @ = mg +p*a’, b = ng+p*b’.
Then clearly a®b —b®a is divisible by p*. This proves that H(a@b—b®a) = ~.
Next identify 4 with a subgroup of /(p) and let ¢ be the homomorphism of 4 ® A4
into /(p) defined by the formula: (x&y)¢ = xy. Then ¢ is not zero and therefore
p(ARA)# AR A, since I(p) has no elements of infinite height at p. Thus it has
been shown that p(A®A4) # A A, but not all (nonzero) elements of 4@ A4 have
finite height at p. By Theorem 1. A ® A is not cohesive.

Theorem 3. If A and B are cohesive then Hom (A, B) is cohesive.

PROOE. Set H=Hom (A, B). If either 4 or B is divisible by a prime p then so
is H. Suppose H not divisible by p: then neither A4 nor B is divisible by p, so each
of A4 and B has, by cohesiveness, no elements of infinite height at p. If ¢ belongs
to H and has infinite height at p in H, then the image of ¢ in B is divisible by p;
hence ¢ is zero. Thus H contains no elements of infinite height at p. Let ¢ have
height zero at p. Then Im ¢ is not contained in pB; choose ¢ in A so that ag has
height zero at p. Then a likewise has height zero at p. Now we show that ¢ +pH
generates H/pH. Let i belong to H. Since p does not divide aq. ag +pB generates
B/pB, whence ayy —may = pb’ (b"€ B) for some integer m. For arbitrary x in A,
write x = na+px,. Then

x(Y—mqg) = p(nb"+ xr —mx, ).
Hence y —mg is divisible by p in H. By Theorem 1, H is cohesive.

§ 3. Constructions

We construct a group G(S) where S is a set of functions denoted by =n, with
values m,, with the following properties:

Sl. 1=|S§|=ec.

S2. Each function has the same domain, denoted by D(S). a nonempty set
of primes.
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S$3. For each prime p in D(S). the set S,. where S, ={n,: m£ S}, is an algebrai-
cally independent subset (over the rationals) of /(p); and if n,=mn,, then n=n".

To construct such a set S, let L be a nonempty set of primes and for each p
in L let 7, be a well-ordered algebraically independent set of p-adic integers with
order type I', where I' is the least ordinal of power ¢. For each ordinal « with
O0=o-=TI set m(p) equal to the «'™™ member of 7,. Take an ordinal f=T and set
S={n,; x=p}. Then S satisfies all requirements, S,=7,, D(S)=L, and |S|=|f|.

Let M be a linearly independent set of reals strictly between 0 and 1, with y
in M and |M| = |S|+ 1. Let x be a one to one function mapping S onto M — {y}.
For each n in S and p in D(S) write the standard p-adic power series:

M, = Mpo+Apy P+ .uy

with 0=m,,<p, and set n) =0, ap= > m, for n=0. Then G(S) is the group of

=0
real numbers generated by y and all x(n)2, for n=0.1, 2, ... and p in D(S). where
(1) x(@p =p "(x(@)+7mpy).
Note that n,, = p~*(n}*! —n}), and that, for £=0, 1,2, ...,
k+1

Q@) px(@pt! = x(M)p+ .

Members of G(S) are simply those reals that are equal to a formula

kiz, p,a)
(a) AP+ T X B
= p n=0

where the coefficients ¢” and «,,, are integers and almost all of them are zero; in
the sums, n runs over S and p over D(S). If D(S) is a singleton, say D(S)={p}.
then G(S) is the Fuchs example of type zero. Pontriagin’s example if p=2. Every
element b of G(S) can be written (uniquely) in the form (almost all coefficients
are zero)

3) b=>by+ 3 b.x(m)

where b and b, are rationals.
GSI1. Let the coefficients of b in (3) be integers. If p belongs to D(S) then p’
divides b in G(S) if and only if p' divides b’ — > b,n%, in Z. If p does not belong to

D(S), then p' divides b if and only if p' divides every coefficient.

PrOOF. First let the coefficients of o be rationals, and suppose & belongs to
G(S). Then b is equal to a formula (a). By independence of the set M we get

k(=, p,a)

Y ’ T 9 ' —nR_R
bV=d+23 2 = Qrpnp Tp,
® P A=

” kur.;:.nl _
2 o Gk (mES)
r

n={

be =
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Let, for each prime ¢g. W, be the (logarithmic) g-adic valuation. (If r is a rational.
write r=¢'r" where r” is a rational with numerator and denominator prime to ¢,
and set W (r)=1t: then W, (r+s) = min {W,(r), W(s)}, W rs) = Wr)+ Ws).)
If g is a prime not in D(S), then both right sides in equations above have nonnegative
¢-adic valuation, and so W (b')=0, W (b;)=0 for all =n. This proves the second
part. Now suppose that g belongs to D(S). let 7 be a member of S, set m=k(n, ¢. a)
and suppose that m = — W,(b,), m=0. Equating the g-adic values of both sides
in the last equation above shows that a,,, is divisible by ¢, say a,,, =qd. If this is
substituted in formula (a) and equation (2) is used, a new formula (c) is obtained
with k(r, ¢, ¢) =k(=n, g, a) and k(x’, p, ¢) =k(n’, p, a) if (7", p) # (7, ¢). By induction,
there exists a formula (a) for 5 with

k(m, p, a)=max {0, — W ,(b,)}

for all = and all p in D(S).

Now suppose that b has integral coefficients, and that p' divides b in G(S).
Since x(n)J = x(m) ——-.\‘(n)?,. the result just obtained guaratees that for some integers
a’,a

npn*
|

b = p' H’y -+ : anpu-\'(n): s

n=0

so that the equations expressing independence have the simpler form

i
b =p(a+2 3 mpp "anpm). be= 3P "anpn.
n 0
Multiply the last equation by n),, sum on 7, and subtract from the next to last equa-
tion. This gives

s

r

b—benp=plad+3 3 aemp "(np— rr:,)],
n x n=0

and p" divides nf —nf, for all n=1r. Hence the “only if” part of the first assertion

is proved. If, conversely, b'— 3 b.nt, = p'c, with integral ¢, then a straightforward

| 4
computation shows that

b= p'(cy+ 3 bax(n)p),

so p' divides b in G(S).

GS2. Every nonzero element of G(S) has finite height at every prime.

ProOF. It is sufficient to prove that if b, in equation (3), has integral coeffi-
cients and infinite height at p, then »=0. This is immediate if p is not in D(S). If
p belongs to D(S). then, by GSI, p divides b'— 3’ b,ni, for every r. In the p-adic

completion of the rationals, therefore,

= lim (b =3 bantl) = b' — 3 ber,.

T

This equation and the algebraic independence of the set S, (recall that if n,=mn,
then n=n") imply 0=4"=5, for all n. whence b=0.
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GS3. If p belongs to D(S) then G(S) is isomorphic with a p-pure subgroup of
I(p) lying between the subgroup generated by | and S, and the pure closure (in 1(p))
of the latter subgroup. Thus G(S) is always indecomposable.

Proor. First we show that the coset of y generates G(S)/pG(S), by showing
that every generator of G(S) is congruent to a natural multiple of y mod pG(S),
where p is any member of D(S). Equation (2) shows this for generators of the form
x(n),. Let ¢ be a member of D(S) different from p. In equation (2) replace p by
¢ and subtract the result from equation (2). There results

¢"x(n)g = (my—1p)y+p"x(n)q;

since ¢ is prime to p, x(n); has the required property (for n=0; x(n)] = x(n)}).
Next replace a by — y in the proof of part (iii) of Theorem 1 to get a map ¢; since
G(S) has no clements of infinite height at p, by GS2, ¢ is a monomorphism whose

image is p-pure in /(p). The remaining assertion is proved by observing that yg = — 1
and that, from equation (2), x(n)¢ =n, (see the construction of ¢ in part (iii) of
Theorem 1).

GS4. G(S) is cohesive if and only if D(S) is the set of all primes.

Proor. The “if" part follows from GS3 and Theorem 1 (b). Conversely, if
p is not in D(S) then, for arbitrary @ in S, y and x(n) are independent mod pG(.S),
according to GSI. By Theorem 1 (¢), G(S) is not cohesive.

GSS. If D(S) is finite then G(S) is homogeneous of type zero. If for some 7 in
S, n,o=mnp=1forall pin D(S), and if D(S) is infinite, then G(S) is not homogeneous.
If for all @ in S and all p in D(S), n,,=(log p)* ™|, then G(S) is homogeneous of
type zero; |t] is the greatest integer = t. (Another condition guaranteecing homogeneity
is given by CorNER [8] p. 697.)

Proor. GSI1 implies the first assertion immediately, and with the hypothesis
of the second, it implies that y —x(=n) is divisible by every prime in D(S); since
D(S) is infinite, y — x(x) has a nonzero type. But y always has type zero. To prove
the third assertion we may suppose that D(S) is infinite. Suppose b = b’y +
+ > b,x(n) #0 has integral coefficients and nonzero type. Then b is divisible by

infinitely many primes in D(S) (only finitely many primes outside D(S) can divide
b). By GSI, there is an infinite set K of primes such that if p belongs to K, then p
divides b'— > b,n,,. But for all large p in K,

6" — 2 bymtyol = |b"— 3 bel(log p)* ™| = || + 2 |b,] log,<p.
(Recall 0 < x(m) < 1.) Hence there is an infinite subset K’ of K such that if p belongs
to K’ then b'— 3 b.m,, = 0. There is a sequence p, of primes in K’ with lim p, = e,

and, for every n,

b’ = 2 b,|(log p,)*™].
Let m =max {x(n); b, =0} (this set is not empty since y has type zero) and suppose
x(n")=m. Then the right side is dominated, for large n, by the term b, [(log p,)”]
(x is a one-to-one function) so that the right side tends to infinity contrary to the
above equation. The contradiction shows that G(S) is homogeneous of type zero.
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Theorem 4. For every cardinal number m with 1 =m= ¢ and every characteristic
o, there exists a homogeneous cohesive group of type [2] and rank m and a nonhomo-
geneous cohesive group of rank m.

Proor. All that is left to prove is the assertion about type [2]. Let G(S) be
cohesive (by taking D(S) to be the set of all primes) and homogeneous of type zero,
rank m, and let H be the group of all multiples r7, where r belongs to the unique
group K of rationals in which 1 appears and has height «, and 7 belongs to G(S).
Then H is still cohesive, rank m, and is homogeneous of type [2].

Theorem 5. Let W be an algebraically independent (over the rationals) subset
of power ¢ in I(p) and let V be a family of power 2¢ of pairwise incomparable (by
set inclusion ) subsets of W, each of power c. For each T in V let T be a p-pure sub-
group of 1(p) containing {1} U T and contained in the pure closure of {1} 'JT. Then
the set V'={T"; TeV} is a rigid system.

ProOOF. Let T and U be members of V and consider a nonzero map, necessarily
a multiplication m,, from 7° to U’. Let ¢, be an arbitrary member of 7 and let ¢,
be either 1 or a member of 7 different from r,. There exist u; in U and rationals
a, b, a;, b, with
thh = a+Zau,

l;h — b-%Zbiu;
t/ty = (a+Zau)/(b+Xbu,).

The last equation and the algebraic independence of W imply that ¢, belongs to U.
‘Thus 7= U so, by hypothesis, 7= U. The algebraic independence of 7 now shows
that A is rational. This completes the proof.

From this and GS3 we get:

Corollary. A4 rigid system {G(S(T')): T< V| is obtained if 'V satisfies the hypothesis
of Theorem 5 and, for each T in V. (S(T)),=
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