Boolean valuation in commutative groups™)

By P.S. REMA (Madras)

1. Introduction

This paper deals with the theory of Boolean metrization developed in [6] in
the particular case of commutative groups. We introduce the notions of Boolean
valuations and Boolean norms in (commutative) groups and obtain a necessary
and sufficient condition for a Boolean valuation to be a Boolean norm. In terms
of the Boolean valuation °§Y we then introduce a notion of metrizability called
(B. Y, M)-metrizability and show with the help of an embedding theorem (cf.
(3.9)) that the Hausdorff (B, Y, M)-metrizable topological groups are precisely
the Hausdorff s-groups (i. e. groups having a system of subgroup neighbourhoods
of zero). We also obtain some sufficient condition for the (B, °Y, M)-metrizability
of non-Hausdorfl' topological groups. By defining an ““invariant™ Boolean-metric
in an obvious fashion on a group we show that the invariant Boolean-metrics are
precisely those which are determined by Boolean norms. Finally we prove that
under certain conditions the existence of a Boolean metric on a group G implies
the existence of an invariant Boolean-metric on G. The paper ends with a brief
indication of similar considerations for commutative rings and vector spaces.

2. Preliminaries and basic results

Here we shall briefly recall some definitions and results from [6] which will
be made use of in the sequel.

Let B be a Boolean algebra and S any set. Then a mapping of the product
set X S in B is said to be a Boolean-metric of S in B or a B-metric on S if it satis-
fies the following conditions:

(1) d(a, b)=0<a=b (a, b€ S)

(2) d(a, b)=d(b, a) and

(3) d(a, b)=d(a, c)Vd(c, b) (for a, b, c€S) where V denotes the lattice sum
in B.

Let P be any dual ideal of B. Then the subset 4,, pc P of §X S is defined by
A,=[(x, y), x, y € §/d(x, y) = p].

*) Forms a part of the author’s doctorate dissertation, University of Madras (1963).
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We have

(2.1): Let P be any dual ideal of the Boolean algebra B. Then the subsets
A,. (p€P) form a base for a uniformity and define a uniform*) structure 4, on S.

The uniformities 4, are called the Boolean-uniformities (or more particularly
the (B, d. P)-uniformities) on S, and the topologies defined on S by these unifor-
mities are called the Boolean-topologies (or (B. d, P)-topologies) on S.

(2.2): Let A, be any Boolean uniformity on S. Then the fundamental neigh-
bourhoods A,(a)=[x€ S§/(x,a)€A,] are both open and closed in (S, 7).

(2. 3): A topological space (S, T) is said to be (B, d, M)-metrizable if there
exists a Boolean algebra B and a dual ideal M of B such that (1) S admits a B-metric
d into B and (2) the (B, d, M)-topology on S is equivalent to 7.

Let (S, 1) be a uniform space. Then the surrounding U, in a base for [ is
said to be idempotent if U,c U,=U,: also we recall that U, is called symmertric
if U,=U;". A base [U,] of the uniformity [ is called idempotent (symmetric)
if each U, is idempotent (symmetric).

Then we have

(2.4): Let (S, 7) be a HausdorfT topological space which is uniformisable by
means of a uniformity [ which has a symmetric and idempotent base [U,], (2 € A).
Then (S, T) can be uniformly imbedded (with respect to 1) as a dense subspace
of a projective limit of discrete spaces S, = S/0,, (x€ A) (where 0, is the equivalence
x0,ye(x, p)EU,).

(2. 5): A Hausdorff topological space is (B, d. M)-metrizable if and only if
it has a uniformity ‘[ having a symmetric and idempotent base.

3. Boolean valuations

We shall first define the notion of a Boolean valuation and (B, °Y, M )-metri-
zability in a commutative group. Here G will always denote a commutative group
and B a Boolean algebra.

Definition. A mapping Y of G into a Boolean algebra B is said to be a group
Boolean valuation (or B-valuation) on G if it satisfies the following conditions:

(1) ¥(x)=0, (the zero element of B) if and only if x=0 (the zero element
of ),

(2) W(x+2)=N(x)VV(z) (where V is the lattice sum in B).

Definition. A B-valuation Y on G is called a B-norm if d(x, y) =¥ (x—y)
defines a B-metric on G and d is said to be the B-metric determined by Y.

(3. 1) Proposition. The necessary and sufficient condition for the B-valuation
N on G to be a B-norm is that ¥V (x) =Y (—x) for all x<G.

PrROOF. Suppose °V determines a B-metric on G. Then d(x,y) = V(x—y)
is a B-metric. Hence d(x, y)=d(y, x) i.e. ¥(x—y) = ¥(y—x) for all x, y€aq.
In particular putting y =0 we have V(x) = V(- x) for all x€G. Thus the condition
is necessary.

Conversely suppose the condition is satisfied. Then d(x, y) = 03> V(x—y) =
= 0ge>x—y = 0ex = y. Again d(x,y) = V(x—y) = V(—(x—y)) (by the given

*) For uniformities the notation of KEeLLEY [3] is used.
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condition) = V(y —x) = d(y, x). Furtherd(x, y) = V(x—y) = V(x—z4z—y) =
= V(x—=2)VNV(z—») = d(x,z)Vd(z, y). Thus d is a B-metric and therefore the
condition is also sufficient.

(3. 2) Proposition. Let G be a group with a B-metric d and let M be any dual
ideal of B. Then the group operations of G are uniformily continuous with respect
to the (B. d. M )-uniformity Ay (cf. (2. 1)) if and only if the following condition ( % )
is satisfied:

(=) Given mi € M there exists an element n € M such that d(x, a)=n, d(y, b) =
=n=>dx—y,a=-b)=m.

PROOF. Suppose the group operations of G are uniformly continuous with
respect to the uniformity A,,. Then given m € M there exists n € M such that A4,(x) —
—A(y) € A,(x—y) whatever be x,y€G. Now d(x,a)=n, d(y,b)=n implies
(x,a)€A,,(y.b)€A,. Therefore ac A,(x),bcA,(y). Hence a—bc A, (x)—A,(y)
C A,(x—y) i.e. dix—y,a—b)=m. Thus the condition is satisfied.

Conversely suppose the condition () holds good. Let mec M. Then by (%)
there exists n€ M such that d(x.a)=n, d(y,b)=n = d(x —y,a—b)=m. Now
z€A(X)—A(y) = z=a—-b, a€A(x), b€A(y). Hence d(a, x)=n, d(b,y)=n.
Therefore d(x—y,a—b) = m by(%)i.e. z = a—b€ A,(x—y). Therefore A4,(x)—
—A(y) € A,(x—y). This is true whatever be x, y€G. Therefore the group ope-
rations of G are uniformly continuous.

Corollary. If d is the B-metric determined by a B-norm Y on G, then the group
operations of G are uniformly continuous with respect to any (B, d, M )-uniformity
A_u on G.

Proor. To prove this it suffices to show that the condition (%) defined in
(3. 2) is satisfied. Given me M let d(x, a) =V(x—a)=m and d(y, b) = V(y—b) =
=m. Then d(x—y,a—b) =W (x—y—a+b) = V(x—a+b—y) = P(x—a)V
VR¥b—-y) = P(x—a)V¥(y—b) = d(x,a)Vd(y,b) = m\VVm = m. Thus (%) is
satisfied and hence the result.

Now we shall prove:

(3. 3) Proposition. Let Y be a B-norm on G determining the B-metric d on G,
and let M be any dual ideal of B. Then the uniformity Ay, is separated if and only if
F(G)NC(M) = 0z (where C(M) is the cut-complement of M ).

PROOF. Suppose A4, is a separated uniform structure. Then |[) Ay =4. If
meM

XEN(G)NC(M) then x=(g). d(0,g)="V(g)=each mé M. Hence (0,g)€A,,

for each me M. Thus (0,g)€ [ Ay =4 i.e. g=0. Therefore x="V(g)=05. Thus

me M
F(G)NC(M)=0,.
Conversely let “V(G) (1 C(M)=0g. If (x, )€ ) A, then V(x—y) = d(x,y) =

meM
=m for each meM. Hence V(x—»)eV(G)NC(M)=0,. Therefore x—y = 0
i.e. x=y. Thus [ A4,=4 i.e. Ay is separated.

meM
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(3.4) Lemma. If G,, (L€ A) are a system of groups admitting B,-valuations

V.'s respectively then the direct product G= [[ G, admits a B-valuation °Y into
AEA

the product Boolean algebra B = H B;.

PrROOF. Let g=(g;) be any clcmenl of G. Define V(g)=(V;(g)), (A€ A).
Then Y is a mapping of G in B. Further V(g) =0, < “V,(g;) =0, for each 1<g, =0,
for each 76 A < g=0. For any two elements g=(g,). h=(h) in G V(g+h) =
= (Vig, + 1)) =(Vig)V¥i(hy) = (Vig))V (Vi(h)) = V(g)V ¥ (h). Therefore °Y
iS a B-valuation on G.

Corollary. If each Y, is a B;-norm then °\ is a B-norm.

PrOOF. Let g=(g;)€G. Then ¥(g) = (V;(g,)) = (Vi(—g)) (as each V; is
a B-norm) = V(—g). Thus Y is a B-norm on G

Definition. The B-valuation °Y of (3. 4) is called the direct product of the
B;-valuations V.

Definition. A topological group (G, 7) is said to be (B, ¥, M)-metrizable
if there exists a Boolean algebrd B and a dual ideal M of B such that (1) G admits
a B-norm and (2) the (B . M)-topology on G is equivalent to T where d is the
B-metric determined by °\

Now any group G with the discrete topology is (B, °V, M)-metrizable; for,
let B be the two element Boolean algebra (0, 15) and let M = B. Define F(x)=0g
if x=0 and V(x)=1, if x#0. Then °V is obviously a B-norm on G and the
(B, d, M )-topology on G is discrete, d belng the B-metric determined by V. It should
also be remarked that any subgroup of a (B, Y, M)-metrizable topological group
is (B. Y, M)-metrizable.

The proof of the following lemma can easily be verified.

(3.5) Lemma. Ler B;, (A€ A), be a set of Boolean algebras and for each /. let

M; be a dual ideal of B;. Let M, be the set of all elements x =(x;), (/€ A) of the

direct product B= |[] B; such that x; = 1; for all but possibly a finite number of places
Ag A

A=Ay (i=1,...,n) and for these i;, x;, is an arbitrary element of M, . Then

(1) M, is a dual ideal of B.

(2) If each M; is non-principal then so is M, and

(3) If C(M,)=0, for each A¢ A then C(M,)=0 (where C(M;)=the cut-
complement of M ;).

Now we shall prove

(3. 6) Proposition. The direct product G (with the product topology) of any
Samily (G, T,), (A€ A), of (B;,°Y,, M,)-metrizable topological groups is (B,*Y, M,)-
metrizable (where B is the direct prodm! of the B)’s, ¥ is the direct product of the
V.,'s and M, is the dual ideal of B corresponding to the dual ideals M;, (1€ A), as
defined in (3. 5)).

PROOF. Let d be the B-metric determined by the B-norm °Y on G and for any
element m, € M, let

(I A, (0) =[x G/V(x)=d(x, 0)=m,].
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Then the subsets [4,, (0)]. (m, € M) form a nuclear base of G under the (B, d, M,)-
topology for G. We call this system of nuclei as system (I).

Any fundamental nucleus of G in the Cartesian product topology of G is of the
form

(1) U= ] Uy0,)
AcA

where L'I;_(O;J - G}H for 4 ;ﬁ;‘i* (i=], v uy H) and UJ"(O&‘):AMI&[(O}”), (l‘= ], vesy H)
where m; € M; and A, (0;)=[x; €G;/V;(x;)=m;]. We call this system of
nuclei of G as system (II).

Since G is a topological group, to prove that these two topologies are
equivalent it suffices to prove their equivalence at zero.

Now given a nucleus U(0) of G in system (II) let U(0) be defined as in (ILI).
Let m;=(m,;;) such that m,,=1, for A#4,, (i=1,...n) and my;, =m;
(i=1,...,n). Then m, € M;. We will show that 4,,(0)E U(0). If x=(x;)€A4,,(0)
then Y (x)=m,. Hence °V,(x;) =m,, for each A€ A. In particular Y, (x;)=m,;; =
=m,, fori=1, ...,n. Hence x;,, EA,,,EE(OM)*—- U;(0;), (i=1, ..., n). Therefore x € U(0).
Thus 4,,,(0)< U(0).

Next suppose a basic nucleus A,, (0) of G in system (I) is given. Let A4, (0)
be defined as in (I). Then m, =(m,;)¢ M,. Hence m; =1, for A#/7;, (i=1,....n)
and m; €M;,, (i=1,...,n). Define U(0)= [] U;(0,) where U,(0;,) =G, for A1+#4,,

A€ A

(i=1,...,n) and U,(0;) =4, (0;), (i=1, ..., n). We will show that U(0)< 4,,(0).
If x =(x;) € U(0), then x;, €4,,(0;). (i=1, ..., n). Hence Fax)=my, (i=1, ..., n).
Hence V(x)=(V;(x;))=m,. Therefore x¢4,,(0). Thus U(0)E A4, (0). Therefore
the two topologies are equivalent.

Corollary. The projective limit of (B;, Y, M,)-metrizable topological groups
(G,, T,) is (B.°Y, M,)-metrizable.

Definition. A topological group (G, T) is said to be a s-group if it has a
nuclear base (i. e. a base of neighbourhoods of 0) consisting of subgroups.
We have:

(3. 7) Proposition. Any (B, Y, M)-metrizable topological group (G,T) is a
s-group.

PrROOF. Let d be the B-metric determined by the B-norm Y on G. Since (G, T)
is (B, d, M)-metrizable the subsets 4,(0)=[y/d(y,0)=m], (me M), form a nuclear
base for (G, T). We will show that each A4,(0) is a subgroup of G. If x, y€A4,(0)
then V(x)=d(x,0)=m,V(y)=d(y,00=m. Hence d(x—y,0=F(x—y) =
= V)OVNV(=y) = V(x)VV(y) = mVYm = m. Hence x—y€A4,(0). Thus 4,(0)
is a subgroup of G. This is true for each me M. Therefore (G, T) is a s-group.

(3.8) Lemma. If (G, T) is a s-group and H is any subgroup of G then G|H
is a s-group with respect to the quotient topology.

PrOOF. Since (G, T) is a s-group it has a nuclear base consisting of subgroups
[N;], (Z€ A). Let f be the natural homomorphism G —G/H. Then the subsets [f(N,)],
(A€ A) form a nuclear base for G/H in the quotient topology (cf. [5]). Since fis a
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homomorphism and each N, is a subgroup of G it follows that f(N,) is a subgroup
of G/H for each /i€ A. Hence G/H is a s-group.

In a s-group (G, T) the base for the usual (two-sided) translation uniformity
Al are the subsets U, = [(x, y)/x=y(N,;)] where [N,], (A€ A) is a nuclear base of
subgroups for (G. T). By the uniformity of s-group (G, T') we shall mean U and
by the completion of (G, T') we shall mean the completion of (G, “U[). It should be
observed that if [N,]. [V,,] are two nuclear bases of subgroups for (G, T') then
(G, “U), (G, U) are unimorphic (U, [, being the corresponding uniformities).

(3. 9) Proposition. Any Hausdorff s-group can be uniformly imbedded as a dense
subgroup of a projective limit of discrete groups.

Proor. Let (G, 7) be a Hausdorfl s-group and let [N;], (A€ A) be a nuclear
base of subgroups of (G, 7). Now U, =[(x,y)/x=y (mod N;)]. Each N, being a
subgroup of G defines a congruence of G. Hence every U; is symmetric and idem-
potent. Thus (G, T) is a Hausdorff topological group which is uniformisable by
means of a uniformity having a symmetric and idempotent base. Hence by (2. 4)
(G, T) can be uniformly embedded as a dense subspace of the projective limit 7 of
discrete factor spaces G/N;., ¢%, (where for A<p, ¢4[x],—[x];, x€G, and [x],
denotes the residue class containing x with respect to the congruence determined
by N,). The mappings ¢/ can easily be verified to be group homomorphisms. There-
fore the projective limit / is a group. Further it can easily be seen that G can be
embedded as a subgroup of /7 and this completes the proof.

As a consequence of (3.9) we have

Corollary i. The completion of a (B, Y, M)-metrizable Hausdorff topological
group (G, T) is a projective limit of discrete groups.

PrOOF. Now by (3.7) (G, T) is a s-group, and being also Hausdorff by (3.9)
it can be uniformly imbedded as a dense subgroup of a projective limit of discrete
groups. Since any discrete group is complete it follows that the direct product P of
discrete groups is complete. The projective limit / being a closed subgroup of P is
therefore complete. Since (G, T) is unimorphic to a dense subgroup of 7 it follows
that 7 is the completion of (G, 7).

Corollary ii. The completion of a (B. Y. M)-metrizable Hausdorff topological
group is (B'. Y. M')-metrizable.

Proor. From corollary i to (3. 9) it follows that the completion of a (B. *Y. M)-
metrizable topological group (G, 7)) is the projective limit / of discrete factor groups
G,, (A€ A). Now each G, being discrete is (B;.°Y,. M;)-metrizable. Therefore /.
being their projective limit is by the corollary to (3. 6) (B, °Y’. M’)-metrizable.

Now using (3. 9) we shall prove the converse of (3. 7) for Hausdorff topological
groups. We have:

(3. 10) Proposition. Any Hausdorff s-group (G.T) is (B, Y, M )-metrizable.

Proor. Let [N;], (#€ A) be a nuclear base of subgroups of (G, 7). Then by
(3.9) (G, T) 1s 1somorphic and unimorphic to a dense subgroup of the projective
limit / of the discrete factor groups G, =G/N,. (A€ A). Each G;, being discrete is
(B;,°V,, M,)-metrizable. /, being their projective limit is by the corollary to (3. 6)
(B. Y, M)-metrizable. (G. T) being a sugbroup of 7 is therefore ( B, V. M )-metrizable.
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Combining (3. 7) and (3. 10) we have:

(3. 11) Proposition. The (B. Y, M )-metrizable Hausdorff topological groups
are precisely the Hausdorff s-groups.

Thus (3. 11) characterizes the HausdorfT s-groups in terms of Boolean valuations.
Now it has been proved in [8] that any zero dimensional locally compact Hausdorff
topological group (G, T) contains arbitrarily small open subgroups. Thus (G, 7)
is a s-group and is therefore by (3. 11) (B. Y, M)-metrizable. Therefore the zero-
dimensional locally compact Hausdorfl topological groups belong to the class of
(B. Y. M)-metrizable topological groups.

In (3. 11) we have shown that any Hausdorff s-group is (B. Y. M )-metrizable.
Thz question naturally arises as to whether this result can be extended to the non-
Hausdorff topological groups also. Even though we do not know the complete
answer to this question, yet we shall answer it in the affirmative for a particular
class of topological groups viz. those s-groups with a nuclear base of subgroups
whose intersection is a direct summand.

We recall that H is a direct summand of G if there exists a subgroup K of G
such that G = H+ K and HMN K = 0 (denoted by G=H+ K. In this case K is
isomorphic to G/H and H is isomorphic to G/K. It is also well known that the direct
product H < K is isomorphic to G (the isomorphism being given by the mapping
fi(h, k) = h+k).

(3.12) Lemma. Let (G, T) be a s-group with a nuclear base [N;]. (A€ A) of
subgroups such that (| N,=N is a direct summand of G, G = N+ K. Then (G, T)

AEA

is the direct product of N and K both algebraically and topologically.

Proor. It suffices to prove that the mapping f:(n. k) - n+k of NXK —
—~ N+ K is a homeomorphism.

Since N= ﬂ N,, N has the coarsest (indiscrete) topology. Therefore any

icA
basic neighbourhood of (n, k) (in G' = NXK) is of the form (N, (N,[1K) (k)),
((N; M K) (k) =the residue class containing k in K with respect to the congruence
determined by N, K). Suppose a neighbourhood N;(n+ k) of n+ k is given. Then
consider the neighbourhood (N, (N, K) (k) of (n. k) in G". If y €f(N, (N, N K) (k))
then y = f((n,, ky)) = ny+ky,n €N, k;=k (mod N;NK) i.e. ky—keN;NK.
Since NS N; and n;, n€ N we have ky, —k+n; —n€N;i.e.y = n;+k{ EN;(n+k).
Hence f(N,(N,NK)(k)) £ N,(n+k). Therefore f is continuous.

Conversely given y = n+k€G, let the neighbourhood (N, (N, K) (k) of
(n, k)=f~"(»)€G" be given. Consider the neighbourhood N;(n+k) of n+k(=y).
If (ny,k,) = YEf~YN;(n+k)) then f(Y) =n,+k,€N,(n+k). Hence n; —n+
+k,;—keN;. Since NEN, it follows that n, —n€N;. Hence k,—k€EN; i.e.
ky—k€N,N K. Hence k,€(N,;NK) (k). Therefore Y=(n,, k,)€(N, (N, K) (k)),
e f[YN;(n+k)) S (N, (N,NK) (k). Thus f~! is also continuous and therefore
/ 1s a homeomorphism.

(3.13) Lemma. Ler (G, T) be a s-group with a nuclear base [N;), (#€ A) of
subgroups such that (\ N, =N is a direct summand of G. i.e. G = N + K. Then K

s A

is isomorphic and homeomorphic to G/N.

D 6
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PrOOF. The mapping f of K on G/N defined by f(k)=[k]=q¢(k) (where [k]
1s the residue class containing k& with respect to the congruence determined by N
and ¢ is the natural homeomorphism G —G/N) can easily be verified to be an algeb-
raic isomorphism. We will now show that it is a homeomorphism. Now any basic
neighbourhood of f(k) in G/N is of the form (¢(N,))(f(k)). (A€ A). Suppose a
neighbourhood (¢(N,)) (f(k)) of f(k) in G/N is given. If Y<f((K(N,)(k)), then
Y=f(z), z€K, z— k€K N;. Hence ¢(z)—q(k) = g(z—k)Eg@(N,)i.e. Y=f(2)=
= ¢(2) € p(N,) (¢(k)) = ¢(N,) (f(k)). Therefore f((K(\N;) (k)) & ¢(N;) (f(k)). Thus
f is continuous.

Conversely suppose the neighbourhood (K(1N))(k) of k is given. If
YEf~U@(N,) (fk)), (y€K), then gp(y—k) = ¢(p)—q(k) = f(y) —fk) € @(N)).
Hence y —k —n; € N for some n; € N;. Since NS N; we have y— k€N, and y—k€K.
Hence y€(N;(1K) (k). Therefore f~'(¢(Ny)(f(k)) S (N;NK) (k). Thus f~' is
also continuous i.e. f is a homeomorphism.

Corollary. Let (G, T') be a s-group with a nuclear base [N,], (L€ A), of subgroups
such that N= [\ N; is a direct summand of G. Then (G, T) is isomorphic and homeo-

At A
morphic to the direct product of N and G|N.

PrOOF. This is an immediate consequence of (3. 12) and (3. 13).

It should be observed that if (G, T') is a topological group with the coarsest
topology then it is (B. Y. M)-metrizable: for let B be the two-element Boolean
algebra (0g, 15) and let M be the dual ideal of B consisting of a single element 1.
Let °Y be defined as follows: “V(x) =04 if x =0, ¥ (x) = 15 if x #0. Then °Y is obviously
a B-norm on G. Further 4, (0) =G is the only (basic) nucleus of G in the (B, Y, M)-
topology of G. Therefore it is the coarsest topology on G. Now we will prove:

(3. 14) Proposition. Let (G. T) be a s-group with a nuclear base [N,], (1€ A)
of subgroups such that N= (| N, is a direct summand. Then (G.T) is (B, ¥, M)-

AEA

metrizable.

Proor. Now by the corollary to (3.13) (G, 7) is isomorphic and homeo-
morphic to N X G/N. Now N has the coarsest topology and is therefore (B,, °V,, M,)-
metrizable. Further N is closed in (G, T) as each N, is closed. Hence G/N is Haus-
dorfl. Further G/N is a s-group. Therefore from (3. 10) it follows that G/N is
(B, V3, M;)-metrizable. (G, T) being the direct product of N and G/N is therefore
by (3. 6) (B, Y, M)-metrizable.

It is known that any (real)metrizable topological group (Hausdorff) is metriz-
able by means of an invariant metric (cf. Birkhoff-Kakutani metrization theorem
[4]). We shall now study a similar situation in the case of B-metrics.

Definition. A B-metric d on a group G is said to be invariant if d(x,y) =
= d(x+a,y+a) for all x,y,a€qG.

(3. 15) Proposition. A necessary and sufficient condition for a B-metric d on a
group G to be invariant is that d is determined by a B-norm.

PROOF. Suppose d is a B-metric determined by a B-norm. Then d(x,y) =
=¥(x—y). Now d(x+a,y+a)=F(x+a—y—a) = V(x—y) = d(x,y). This is
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true for all x, y, a€ G and therefore d is invariant. Therefore the condition is suffi-
cient.

Conversely suppose d is an invariant B-metric on G. Define “Y(x)=d(x, 0).
Now  V(x)=0z¢ d(x,0)=0z; & x=0. Again  V(x+z2) =d(x+2z0) =
= d(0,x+z2) = d0, x)Vd(x, x+2) = d(0, x)Vd(x —x,x+z—x) = d(0, x)V
Vd(0, 2) = B(x)VV(2). Finally Y(—x) =d(—x,0) =d(—x+x,04+x) =
= d(0, x) = V(x). Thus %V is a B-norm on G. Further d(x.y) = d(x—y.y—y) =
=d(x—»,0) = V(x—y) for all x, y€G. Thus d is the B-metric determined by
the B-norm °V. Thus the condition is also necessary and this proves the result.

(3.16) Lemma. Let (G, T) be a topological group such that

(1) (G. T) is uniformisable with a uniformity Al having a symmetric and idempotent
base and

(2) The group translations of G form an equicontinuous family with respect
to ‘.

Then (G, T) is a s-group.

PrOOF. Let [U,], (2 € A), be a symmetric and idempotent base for U. For each
2€A define V, = [(x,»)cU,/(x+a,y+a)cU, for each acG]. Then V,EU,.

Since the translations form an equicontinuous family with respect to U, given
U,, (2€A), there exists a U;, (f€A) such that (x,y)€U; = (x+a,y+a)eU,
for all a€G. In particular for a=0 we have (x, )€Uy = (x,y)eU, 1.e. U, &EU,.
Further Uy V, (from definition of V,). Therefore we have

(I U,CV.E .

From (I) it follows that the subsets V,, (x€ A) of G X G form a base for the
uniformity 1. We will now show that each V,(0) is an open subgroup of G.

Since U,=U;"! it follows that V,=V!. Now if x, y€V,(0) then (x,0)€
€V,, (¥,0)€V,. Hence (0, y)€V,. Therefore

(10 (x+a,a)eU,, and (a, y+a)< U, for each a<G.

Let a* = y+a: as a runs through the elements of G, ¢* also runs through
the elements of G. Hence substituting in (1) for a, we have (x —y+a*, a*—y) €U,
and (a*—y, a*) € U, for each element a* €G. Hence (x —y+a*,a*)cU,oc U, = U,
(as the base is idempotent) for each «* € G. Therefore (x —y, 0)€ V,. Thus (x —y)€
€ V,(0). Therefore each V,(0) is a subgroup of G.

Given V,(0) choose U, as in (I). If x€V,(0), y€ Uyx) then (x, ) eU; &V,
(from (I)) and (x, 0) € ¥,. Therefore (x +a, y +a)€ U, foreacha € G and (x +a, a) €U,
for each a€G. Since U,=U;' we have (y+a,a)€ U, for each a€G. Therefore
(»,0)€V,. Hence y€ V,(0). Therefore Uy(x)E V,(0) i. e. V,(0) is open. Given x€ A,
since V,E U,, V,(0)S U,0). Therefore (G, T) contains arbitrarily small open
subgroups i.e. it is a s-group.

(3. 17) Proposition. Let (G, T) be a Hausdorff topological group such that

(1) (G, T) is uniformisable with a uniformity \l having a symmetric and idem-
potent base and

(2) The group translations of G form an equicontinuous family with respect to
the uniformity I.

Then (G, T) is (B, Y, M)-metrizable.
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Proor. This follows from (3. 16) and (3. 10).

Since algebraic structures like rings and vector spaces admit a group operation,
it is seen that the notion of Boolean valuation in groups can also be extended to
them so as to take into account their extra operations. Thus we have:

Definition. A group Boolean-valuation °Y of a ring (commutative) R into
a Boolean algebra B is called a Boolean-valuation on R (or ring B-valuation) if it
satisfies further the following conditions viz. V(xz)=V(x)/Y(z) (where / is
the lattice product in B).

Since a ring B-valuation is also a group B-valuation we recall that d(x. y) =
= V(x —y) is a B-metric if and only if Y(x) = “V(— x). In this case the correspond-
ing B-valuation is called a ring B-norm. (If no distinction need be made we call it
simply a B-norm on R).

Remark (i). Let R be a ring with the unit e. Then any B-valuation N on R is a
B-norm on R.

ProOF. Now VW(—x) = V(—xe) = V((x)(—e)) = V(x)\F(—e) = V(x).
Again V(x) = V((—x)(—e)) = V(—x)AV(—e) = V(—x). Therefore ¥ (x) =
= Y(—x). Thus Y is a B-norm on R.

Remark (ii). Let R be a ring with the unit e and let °Y be a B-valuation on R.
Then ¥ (x)=(e) for each x¢€R.

PROOF. ¥(x) = F(x-e) = V(x)AV(e) = V(e).
The following propositions follow exactly the same pattern of proof as in the
case of groups.

(3. 18) Proposition. Let R be a ring admitting a B-metric d and let M be any
dual ideal of B. Then the ring operations of R are uniformly continuous with respect
to the (B, d, M )-uniformity Ay on R if and only if the following conditions (%) is
satisfied: (% ). Given me M there exists an element nc M such that d(x,a)=n,
dy,b) =n=dx—y,a—b) = m and d(xy,ab)=m whatever be the elements
x,y,a,beR.

Corollary. If d is the B-metric determined by the B-norm °Y on R then the ring
operations of R are uniformly continuous with respect to any (B.d, M )-uniformity
Ay on R.

Proor. To prove this it suffices to show that the condition (% )" of (3. 18) is
satisfied. It has already been observed that for the continuity of the group operations
given meM, dx,a)=m, d(y,b)=m = dx—y,a—b)=m. Now d(xy,ab) =
=V(xy—ab)=NV(xy—ay+ay—ab) =V[y(x—a)+a(y—b)] = [V(»AV(x—a)ly
VIR(@A AN (y—b)] = V(x—a)y N (y—>b) = mVm = m. Thus the condition (%)’
of (3. 18) is satisfied and hence the result.

Exactly as for groups we can define the concept of (B, °Y, M )-metrizability for
topological rings. We also make the following:

Definition. A topological ring (R. T) is said to be an I-ring if it has a nuclear
base consisting of ideals.

Then:

(3. 19) Proposition. Any Hausdorff I-ring (R, T) can be uniformly imbedded as
a dense subring of a projective limit I of discrete rings.
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Again we have:

(3. 20) Proposition. The (B, Y. M )-metrizable Hausdorff topological rings are
precisely the I-rings.

In the non-Hausdorfl case we have:

(3. 21) Proposition. Let (R, T) be a I-ring with a nuclear base [I,], (A€ A) of
ideals such that I = I, is a (algebraic) direct summand. Then (R, T) is (B. Y, M)-
A A

P

metrizable.

In the case of a vector space V over a field F a group B-valuation will be called
a vector space B-valuation if it satisfies further the condition “Y(ax) =Y (x) for all
ac K and x €V (as Fis a field the inequality will become an equality. But the above
definition can also be extended for modules over arbitrary commutative rings).
In this case it is seen that any vector space B-valuation is also a B-norm. A theory
of (B, °Y, M )-metrizability similar to the case of groups and rings can be developed
for vector spaces also. Further as any vector subspace of a vector space V' is a direct
summand of V we have the following result:

The (B, Y, M)-metrizable topological vector spaces are precisely the s-vector
spaces” (i. e. vector spaces having a base of neighbourhoods of zero consisting of
vector subspaces).

In this connection I wish to express my gratitude to Dr. V. S. KRISHNAN and
DRr. V. K. BALACHANDRAN for their valuable guidance in the preparation of this

paper.
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