On the summability of the Fourier series of .-
integrable functions, II

By E. MAKAI (Budapest)

§ 1. Introduction

Let m, and m, be the classes of the not identically vanishing »n’th order trigono-
metrical polynomials

(1. 1) f(x) = -;—" + O (a,cos vx + b, sin vx)
v= 1
and
(1.2) f(x) = ‘i (a, cos vx+ b, sin vx)
ve1l

respectively. s(x) =s,(x:f) the K th partial sum of f(x) and Ci™ the least positive
quantity for which the inequality

| o 2nr ! n la |2 . | lz
3 1 5, (27| = g 119l L > a2+ 18,2
(] -) m r‘=_1 S.l, m ]i C { 2 +l‘:Jl (|aw| +.b\'- )
holds for each set of indices k,.k,., ..., k, satisfying the inequalities 0=k, =n
(r=1,2,....,m) and for each function f(x)€m,.

The existence of two sequences of positive integers {m,} and {n,} (s=1.2.3...)
both tending to infinity, with the sequence {C,™} remaining bounded, would imply

that the Fourier series of each L? integrable function would converge almost every-
where. (Cfr. [4].) In [4] | have shown that if

(1.4) E/(x) = cos x4+ cos2x+ ... +coslx, Eo(x) =0
then
a1 m < ; 2n l}l
.3 "”' ey e il min ' e =%
(1.5) C e ;T:‘..{ 5 +,,=Z; = E u,,.;.,,.(m (» q_).
C B AR m

and | have formulated the following
Conjecture (C): If mn (including the trivial case n=0) then
(m) ..'II’ _1_ . ;"
(1. 6) g l =

m’
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Moreover equality occurs in (1. 3) if and only if

kpmfnes,, =k wip
and f(x) is a multiple of
(1.7) 1 4 cos mx +cos 2mx + ... +cos nx.

Note that the conjecture implies that C is bounded. One of the purposes of
this paper is to verify this conjecture for m = 53; for m =53 its truth or falsity remains

an open question.
The statement of the conjecture in the cases m = 53 will follow from the somewhat

stronger
Statement (C") If m\n, m=53 and ).,(."" is the least positive quantity for which

the inequality :
L 2'” e n : 3
2 %, [;,;— ] = i J{Z: (Ia, + lb,lz)}

(1. 8)
holds with each set of indices k,, ..., k, satisfving the inequalities 0=k, =n
(r=1,2,....m) and for each function f(x)€n, then

(1.9) A = Vnm.
Moreover equality occurs in (1. 8) if and only if

ki=ky=..=k,=n
and f(x) is a multiple of

(1. 10) E,;(mx) = cos mx+cos 2mx + ... + cOs nx.

In the meanwhile we shall have occasion to solve the following
Problem. If ny is the class of real trigonometrical polynomials of the form
(1. 2) normed by the condition
n
Sas+b7) =1
-=I.

v

and 1=ry<ry=...<r,=n=38 (r, integer, x=1,2, ..., p) to find the least quantity
In(Fys Tay ooy 1) for which

2n

"
(1.11) 2, max s.‘[ ]:ﬂ(;} (feny)
0,1,..,n

and to find the extremal functions for which (1. 11) holds with sign of equality.
The solution is:

(1.12) A(ryyras-asty) =Vnu

irrespectively of the distribution of the integers r, : they may be in a cluster or may
be distributed more or less uniformly in the interval (1, n).
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This problem has one and only one extremal polynomial f(x) characterized by
the following peculiar properties:

: 227 i :
(1) f "—l—f’] = l,-’ II i 2ELL s )
T 2| 2n ’ .
(i1) f[—r] =0 if re(l,2,...,n) and r¢(ry, ..., r,);
(111) ) [ [ ]J = l - g PELLZ ok
(iv) its Fourier coefficient b, vanishes.

So the extremal polynomial assumes only three different values in the points
njin (j=1, 2, ...,2n; n=138).

With the method of this paper it may be possible to extend this result to some
other n’s, too, though this method falls short in treating the case of unrestricted
n’s [1). If the Problem’s solution would be of the form indicated above for each
n, it would imply Statement (C’) for any m and Conjecture (C). Indeed Statement
(C’), in the case of unrestricted »’s would follow by Lemma 2 from the special case
uln, r,=xn/u. However, there exist examples showing that the solution of the
Problem in the case n =38 is not always given by formula (1. 12) nor do the extremal
functions always possess properties (i)—(iv).

On the other hand this Problem is solved in a host of cases. For. in the case
of a fixed n, there exists 2" —1 possibilities of choosing ¢ numbers ry, 75, ..., 1,
(u=1,2,...,n) from the set 1, 2, ..., n and so the number of special cases in which
the Problem is solved is 23 —39.%),

The most important special case is. however g =n. Then we have the exceedingly
simple results

31 2 ciis W) =8

and f(x)=cos nx (n=38). If this solution of the particular case u=n would hold
without the restriction n = 38 or at least for an infinity of s, this would again imply
that the Fourier series of any L? integrable function would converge almost every-
where.

Now if ry,ry, ..., r, is any permutation of the numbers 1,2, ...,n (n=38),
little can be said about the sequence

AL ALY Aokl s v B lla s Tavwnia By s A P34 s vnei Bg)

except that it consists of nondecreasing numbers. Indeed if f(x)€n, is one of the
extremals defined above, 1. e.:

;.':(rl.r:.,.“,f'“)

_M

max 5,.[ ,,,f]

k=0,.

*) If one identifies those special cases which are trivially equivalent, this number must be
reduced by a factor of about 1/75.
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(st == n. n unrestricted) then one has

[T |

L K

s , 2n _

Ag(Pgseees PusPasy) = Z max s, (?r,:)‘ =
n

=1 k=0,1,..,

since so(2nr, + “f'n.f} =0.
It may be possible that this trivial inequality could be sharpened to

2 14 7 DR ) oo i | RO TRy |
If this would be true for u = n—1 only, this would be decisive. For we shall
prove the following
Theorem 1. If for some n the inequality
AL 2. = 1) = A D soeu B)

holds, then for this n one has 7,(1.2, ....n)=n.

Again, one sees from the solution of the Problem that in the case u=n= 38,
the extremal function f(x)=cos nx displays the following three features: (a) it is
positive on the places x=2nj/n (j=1, 2, ..., n), (b) it is an even function and (c)
it is unique. In connection with this we have

Theorem 2. If for some n each extremal function of (1.11) in the case p=n
has property (a) or (b), or there exists only one extremal function, then for this n
the equality 75(1,2, ..., n)=n holds.

§ 2. Definitions, notations and lemmas

The notation [[f|| will be used for any polynomial of the form (1. 1) to denote

the quantity
| 2 L %
{-";L + 2 (a2 + lb..ll)} .
v=1

The classes =,, n, and 7, of trigonometrical polynomials have been already
defined in §1.

For sake of simplicity the m'tuple of integers k,, k,,....k,, will be called the
vector k and the set of all vectors admissible in (1. 5) (i. e. the set of all vectors
the coordinates of which are nonnegative integers not exceeding n) the set K.
Then if

(2.1 Eky,....k,) = E(k) = Z Z E o (kp kg [28 (P—Q)] ;

p=1g=1 m

the conjectured equality (1. 6) is by virtue of (1. 5) equivalent to

2.2) max E(k) = mn (mn).
ke K
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A vector k" will be called a maximal vector if
E(K’) = max E(k)
ke K

and the set of maximal vectors for a given m and n will be denoted by K*.

m

Finally it will be convenient to introduce the m>m matrix E(k)=[e,]; -1
with the elements

2
(2 3) "’pq — Eminth-.ﬁul (?? (ﬂ _q)] $

The scalar quantity E(k) is equal to the sum of the clements of the matrix E(k).
We shall need the following lemmas.

Lemma 1. If for some m and n (m|n) the statement (C’) holds, then for the same
particular values of m and n the conjecture (C) is also true.

Lemma 2. Let x be a vector, the elements of which are the real numbers
X1s X2y «evs X,y 1 @ natural number (not necessarily a multiple of m), k = {k . k5, ..., k)
a vector the elements of which are nonnegative integers not exceeding n, 2'(x, k) and
(X, K) the least quantities for which the inequalities

2. 4) _E:sk,(x,:f) = (k) (fen,lfl =1)
and
2.5) S5 =rwK (fer)

-

re

respectively. hold. Then

m m %
LK = xK=1F > ft‘mi.,u,,.:.-.,;(-\‘p—xq)} .

p=14g=1

If 2/(x,k)#0, then there exists but one extremal function in m, for wich equality
holds in (2. 5). This is the polynomial

2.6) ) = ] 3 B (x—x)
and any extremal function in (2. 4) is of the form é&*f, \(x) where « is real.
Lemma 3. If mn, k is an admissible vector,
ki=zk,=...=k,=0 (mod m)
and Kk is not equal to the vector
(27} k*={n,n,..,n}
then Kk cannot be a maximal vector.

Lemma 4. [If, for a particular pair of quantities m and n (m|n) the set K* contains
the only element k*, then (i) (1. 6) and (1. 9) hold, (ii) in (1. 3) and (1. 8) equalities
stand only if f(x) is a multiple of (1. 7) or (1. 10), respectively.
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Lemma S. /f mn,kcK* then min k,=0 (mod m).
r=1.,2,....,m

Lemma 6. /f for a particular m=2 the quantity

5!

3

(2.8) H(m) =  max {—m +1+4 D max {E, [i—f r] g 0}}
1 r=1

1=1,2,..., "
satisfies the inequality

2.9) H(m) < %

and n is any multiple of m, then the set K= consists of the only vector k*.

Lemma 7. If H(n) =0 for a particular n, then for this n the solution of the Problem
of the Introduction is that given in § 1.
§ 3. Proof of Lemmas 1—5 and of the Theorems

If, by virtue of the supposition of Lemma 1 one has for some m and n (m|n)
and for any fé¢m,

LR 2n 2n
22 aws»Tr+b sml?r

r=1 v=1

[IA

[ f }
1 %{Z(iavl“’+ Jb..|2)}

v

with equality only if f=c(cosmx+cos2mx+...+cosnx) and k,=k,=...
.. =k,=n, then for any a, we have

aq 2n 2z |||
m\Z{ +Z[a com!—-r+b sinv e r]}!

[IA

—

l-ijjl 2 siny 25|
aco&‘,tm r+ sm'.mr

M |r=1v
i 0 /1, n {fal,l: -2 }%
=R B | =\l =4+— la.|2+ 1b.|2
5175 ) m{g'(al +1b,I? )} Vatmp 2+ al+b
by Cauchy’s inequality, with equality everywhere only if &y =k, =... =k, =n and

f = ¢(3+cos mx+cos 2mx + ... +cos nx). This proves Lemma 1.

Lemma 2 can be proved with the method of Kolmogoroff and Seliverstoff
([3]) just as it was done in a similar case in § 4 of Part I of this paper; we do not
repeat it here.

To prove Lemma 3 we note that one has in this particular case with the notation
of (2. 3)

Hpqﬂl

(3. 1) epp = Kps €pg = Zcosx—(p q) = (p#q)
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where the integer a,, is defined by min (k,, k))=a,m and so

13:2) E(k) = Z k,= 2 n=Ek*)

with equality only if k=k*.
In view of the foregoing and of formula (1. 5) the first half of the statement
of Lemma 4 is evident. As to its second half we treat the case f¢n, only. Then we

have
2n 1 n "
:, [_mf'] < l,/'f+;;[lf!t

if k is an admissible vector different from k* and f¢n,.
If, however k =k* one has by Cauchy’s inequality

1

Zr( ]

+a,,+a1,,,+ oy

1 m')| m

|

=1/ L, n|lat? 2 P 1,
= l 5 { + |a,)? + lay,l® + - +[an|z} —2”+";;1|f||

and equality stands on both places only if 4y, =a,=a5,=...=a,,a,=0 for v#0
(mod m), b,=0 for each v.

The case fen, can be dealt with similarly.

Lemma 5 is an obvious version of Theorem 5 of Part I of this paper. Its proof
is incorporated alongside with similar statements in § 6. (Formula (6. 3)).

Theorem 1 may be deduced from Lemmas 2 and 5. Lemma 35 states in the
particular case m =n that if k € K* and the vector k* defined by (2. 7) is not contained
in K* then at least one element of k vanishes. We shall show that the assumption
k* 4 K* is in contradiction with the supposition of Theorem 1, hence k* € K* and
Aablids vy M=K =0,

Indeed if k¢ K* and k" € K* then we may suppose without loss of generality
that the last element of the vector k™ = {kf. .... kn—1. ks} vanishes: k, =0. Then
by Lemma 2 and by the definition (1. 11) of A;(1,2..... p)

[4a (1,2, .. ")] p.z; Z‘Emm{k T )[_" iR ‘I)]

n—1 n-1

27'{ s 2
= D fi’gmi,,{,l.:_,‘_z, —(p—9) =la(1,2,..,n—DP

p=1 g=

which contradicts the supposition of Theorem 1.
Finally turning to the proof of Theorem 2 let f,(x) be an extremal function of
(1. 11) 1a the case r.=% (=1,2, ., §t).
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(a) If any partial sum (up to the n'th) of f,_,(x) is positive on the place x =2,
then 4,(1,2, ...,n) is by definition greater than A,(1,2.....n—1):

n—1
ALl v i=1) = 2 max s, [?;—:z z:f,,_I] =
K= ] k

= Zmaxs,‘ [ER— x:f,,_I] = A0 2 i)
x=1 k n

If however each of these partial sums in non-positive, then max s,(2n.f,_ ;) =

k
=5o(27, f,-1) =0 and by supposition (a) of Theorem 2 f,(x)#f,_,(x). hence

20,2 cpn=1)= Zmaxs,‘[---/ ¥ 1] L Lot () e ML)

In both cases we have A,(1.2,....n—1)=4,(1,2.....n) and Theorem 1 can be
applied.

Now from the definition of 4,(1, 2, .... n) it is clear that if
3.3) £ = 3 (a*cos vx+b¥sin vx)
v=1
is an extremal function, then
(3.4) f. [x—";,—’I -

% 2n i At e 2n i 2]
= Z ay cos? v — by sin e v|cos vx+ | b7 cos == v ay sin = v| sin vx

v=1

must also be an extremal.

(b) If, by supposition f,(x) and f;,[x—z’—::] are both even functions, we have
by (3.3) and (3. 4)

bY =0, afsin%vzo el 2. o0
hence for odd »'s ay =0 for v = 1,2, ...,n— 1. Finally from | f(x)|=1 we have
Ju{x) = £ cos nx. Since only the positive sign yields a maximum, we can apply the
first part of Theorem 2.

If, however, n is even we are led to the conclusion that any extremal must be
of the form f,(x) = ay cos nx + a2 cos nx/2. Now we have to distinguish several
cases.

Case 1: ay =0. Then

c 2n n
2, max § = % a2 COS — X+ aj cos nx

x=1k=0,..,n 2
< . 2n % i
= max s |— a,.zc0~r——a,,
we=1 k=0,...,!|'_-'2 n : 2 2

since |ap2| = 1.
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Case 2. 1: ay =|ay 2| =0. Then

n n
2n n & : > s
Z max S (— 2%} a;}; COS — X+4a, cosnx| = 2[a,’.’+ (—=1)"an;2] = na, = n
x=1 k=0,..., n n 2 =1
with equality only if a5 =1, an2=0 since a;? +a,’ = 1.

Case 2.2: |an2| =ay =0. Now

2n - .
Z max S |— #: a2 cOs - X+ a, cos nx
x=1k=0,..n n 2 y

II
- [
a
—
]
]
—
| —
Il

= J@+lata) = n | B2 <0 (j=1,2,..,m).

Summing up the different cases the maximum is attained only for f,(x)=cos nx
and we are led again to the first part of Theorem 2.
(c) Turning to the last part of this theorem if f,(x) is unique for some n, then

Ju(x) =f,,‘.\'—2—:] and from (3. 3) and (3. 4) one has
ai’cosgn— v— by sin Z—Ev = aqy
n 7

. 2m » 2n
a, sin — v+ by cos —v = by.
n n
This system has only the trivial solution, save if v =n, i. e. the extremal function is
necessarily of the form f,(x) = aj cos nx+ by sin nx (a}? +b}*> = 1). Now

0, if a;j=0
na,, if af=0

n

2n » e
max S, |—— #; ap, cos nx+ b, sinnx| =
x=1k=0,1,....8 n

and the left hand side is equal to n only if @, =1, by =0, in all other cases it is less
than n, hence f(x)=cos nx, and 4,(1,2,....n)=n.

§ 4. A generalization of the problem of the introduction

Our next aim is to deal with the case m = 38 in Statement (C’) of the Introduc-
tion and to solve simultaneously the problem given in § 1.

The solution of both problems is contained in the following

Lemma 8. If min, k,=0,1, ....n (r=1,2,....m), m=38, 1=pr, <r;<...

... <r,=m (r, integer for x=1,2, ..., p) and 3\"(r\, s, ..., 1,) is the least positive
quantity for which

(C))

2 2 S (m - , |
Z:Sk,x [;f r,,;f” = L0t at) (€L IS =1)
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for any set k, . k,,, ....k,, then

4.2) 1 [Py ryesorsty) = Vn.
Equality occurs only if k, =k,,=...=k, =n and f(x) is equal to
. 1 < [ 2n ]

4.3 -— E,|x——r,

i } np ”2: m

multiplied by a constant of modulus 1.
Hence statement (C’) follows for m = 38 by taking u=m, r,=x (x=1,2, ..., m)
since

I < 1 2
e 2E 'x—_r] = . Zcosm[xu’—}r] = COS MX +C0S 2mx + ... + cos nx.
=1

v=1r

On the other hand, one has by Lemma 2, that if Lemma 8 holds, then with
the notations employed there,

£ 2n ' o
(4. 4) > s, [,—n rn;f] =Vm  (fem)
and equality occurs only if k, =k,,=... =k, .=n and f(x) is equal to the function
(4. 3) or with the notations of Lemma 2
ey 2n 2n u
o . / . e it ol A, e el
/1 (xsk)_ l’n# If .Y— nl rl! iy ”z r#}t k— {ﬂ n N}.

In the special case n=m the inequality (4. 4) is equivalent to (1. 11)—(1. 12). Since
for x#0 (mod 2n)

; 1
S [n+ 5].\7 ]

En(x): gt
2sin :
2
one has
n if x=0
0 if t—~2—n =]1,2 n—1)
E.(x) =" el ) == diduzeny
Lo x=%(2r+1) (r=0,1,....,n—1)
further
n—1
E, x—-% r] = Z cosv[x-—%—fr]+cosnx,
v=1l

therefore in our special case the function (4. 3), the only function in n, for which
(4. 4) is satisfied with the sign of equality, is by virtue of (2. 6) the one characterized
by conditions (i)—(iv) in § 1.
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§ 5. Proof of Lemma 6 in the case //(/m) =0 and of Lemmas 7 and 8

In order to prove Lemma 6 we shall give an upper estimation for the quanti-
ties E(k)=ZXe,, (see 2. 3). Suppose that y, of the elements of the vector k satisfy
the congruences k,=/ (mod m) (/=0,1, ..., m—1) so that with y=7,

(3.1) Y49 +Y24.cFPy—qg =M

and the elements k,, . k,,, ..., k, should be divisible by m.

Py
Putting i =n/m we have

,,Ze"’”: kaé_

p=1 ]

e m-—1
km"'Z nith—Dm+1}.
=1 I=1

On the other hand if p#q and x,=2ar/m, e, = min (K, & roFp—%) =
= max {E, (x,—x,), 0} + max {E; (x,—x,).0} and we can estimate the sum of
the oﬂ‘-dlagonal elements of E(k):

229 = ZZmax Ex (x,—x,), 0} +22max {Ey, (xg—x,), 0} =

p=1q=p =1qg=p g=1p=q
m m—1 m
=2 Z’ Z: max {E, (x,),0} = 4 21’ F(k,,m)
p=1lr pP=

where for m =2

oy I3

F(k,,m) = = 2 max{E,(x),0} = 2 max{E, (x),0)
r=1 r=1

B

since
Ek ,-,{.xr) = Ek ,( X~ r)

and in the case of an even m
E; (X,2) = cosm+cos2n+ ... +cos k,n=0.
We remark that
(52 F(k,,m) = F(k,+m,m) and F(0, m)=0.
Summing up we have

m—1

(5.3) E(k) = _Z'k +Z’ ;,{(h—l)m+f}+42 nF(l, m) =

¥ m—1 m—1
= 2 kp+ 2 wn+ 2 nHm) = M)

by the definition (2. 8) of H(m).
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Table of the values of the function H(m) for 33 =m =60
{lf 3m=32, then H(m) = —1.) [2]

m H(m) m | H(m) ’ H(n) m | H (i)
| | ! |
33 ~0,8370 40 | 0,3252 1,3644 54 | 41527
34 ~0,8346 41 0.4410 48 2,5628 55 | 3,9579
35 ~0,5882 42 1,0522 49 2,2586 56 3,9382
36 —0,1857 43 0,9025 50 | 2,5996 57 4,9962
37 ~0,2992 44 0.8997 51 3,2941 58 4.5419
38 —0,4837 45 1,8167 52 2,9881 59 4,5401
39 0,4421 46 1,5694 53 2.8764 60 5,8271
|

The accompanying table of the values of H(m) [2] shows that H(m)=0, if
2 =m=38 and so it follows immediately that

m—1 m—1
(5.4 E(k) = M(k) = SYk .+ Z y.n = yn+ Z Y n = mn
|_l I=1 iI=1
if y,+72+...+Ym-1>0and 2<=m=38.
On the other hand if m=38 and y,+7,+... 4+ 9wy = 0, then y=m and
Lemma 3 can be applied:
(5.5) E(k)= E(k*)=M(k*)=mn

with equality only if k=k*.

So we found that if 2<m =38 the set K* contains the only element k* and
Lemma 6 is proved for these m’s. Using Lemmas 4 and | we see that Conjecture
(C) and Statement (C’) are also proved for these m’s.

Turning to Lemma 7 we regard it as a consequence of Lemma 8 in the particular
case m = n =38 (cfr. the end of § 4) since we know that H(n) <=0 for n = 38 and shall
prove the more general Lemma 8.

Lemma 8 was already proved in the particular case uy=m (ry =1, r,=2, ... 1, =
=m) for we have shown that if m =38, m|n, then

E(k)=M(K), M(k)=mn if kéK and k=k*
and
(A1, 2, ....m))" = max E(k) = E(k*) = mn.
ke K

Since K* contains the only element k* there is a unique extremal function which
can be found by applying Lemma 2.

Now we turn to the case u<=m. To any sequence of u numbers A,l Koy vy
we adjoin two m-dimensional vectors k, and k* of the set K. The r,’th components
of both of these vectors will be equal to k,_(x2=1, 2, ..., u) whereas if ¢ is not equal
to any of the numbers r,, r,. ..., r, then the ¢’th component of k, will be 0 and the
same component of k* will be n. The set of all vectors k. K will be denoted by
K., i.e. K, is the set of all admissible vectors whose ¢'th components are 0 if ¢
is not equal to any of the numbers ry,r,,....7,.
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We have by Lemma 2

m 2
(3. 6) [)fl ’(;-i 5 ouniy ;-”}]2 = max Z 2 Bdan:. ) [-"’} (r,— r,)] =

k—-ﬂl wne=1t=
x-]l ..... "

m m
= max Z = E',[ - (p— q)] — max E(K)
" ke Ke p=1gq=1 m ke K,

since in the case ke K,
2n 2n
Eminlk,,.kq] [ e - ‘?)} = E, [ pre (p _‘!)] =0
if at least one of the quantities p and ¢ is not contained in the set ry,ry, ....7,.
Further, it follows from (5. 5) and (5. 3) that for m =38, m/n
(2.7) mn=M(k")= Mk, +(m—pu)n

with equality only if kr=k* i. e. the components of kr are either »’s or 0’s. This
last vector will be denoted by ki and one has by (3. 2)

(5. 8) E(k;) = un.
On the other hand from (5.7) and (5. 3) we have that
un = M (k) = E(k,),
if k.€K,, k, #k;. Hence by (5. 6)
(5.9) A (rys ras st ) Z ER)  (kEK))

and equality stands only if k =k;. In view of (5. 8) this is the first part of the statement
of Lemma 8. Its second part, formula (4. 3). is derived from the unicity property
of the vector k; in connection with inequality (5.9), and from the statement of
Lemma 2 regarding the extremal function. With this, we have got the solution of
the Problem of § 1. too.

§ 6. Proof of Lemma 6 in the case 0= H(m)=11/3

In dealing with the case 0= H(m)=11/3 (this contains by virtue of the Table
the cases 39=m=53), we shall need the estimation

I~(3=2Y2)

V2=

6.1 E(=-C(l-1)—1 with C= - = 0.21845.

This estimation is obviously valid if /=1. Hence we may restrict ourselves to
the cases /=1. Obviously it is sufficient to regard the interval (0, 7) and in this
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n 27:_] 3n 4n S5n 6n
r!_!?.! }r'sr lp !_r"'

where /I’ = 1+ 4. Now if x lies in one of these subintervals but not in the first one,
then

only the subintervals

sin!’[t——ZE]
L i L o
0 Zlnl\‘ . 2si l ,c_f-g * . &
s 5 sn2 ; 7

Hence the place x, of the absolute minimum of Efx) in (0, n) lies in (z/l’, 2n/I").
Moreover it is easily seen that
d TR | 2n
EE;(J)}O if 37 = X T

and so w/l’ <xq=3n/(2I).
We estimate E/(x) in this last interval as follows:

) 3 S RETE 5
E/(x) = —{cos [l ¥ n]} {2 sin 2} -5 =
3 3V o 2 1 AN T 1 i
F _{1_[;] [’ "““2'“] H" 37/40) } .

Here we used the inequalities

[IA

2 - %
2 . n sin sin y
coscx-:]—[; a2 if O=x=— and ﬁ}_TL

2 B
The place and value of the minimum of the function Eff(x) can be calculated
directly and so we have

if O-f[f-r:}*-:%.*)

x4 - 1 -
sin3n/(4') 2

3n 3 l_l[g -
“orTar | “el\ar)| Tag+n

*) Thc_;ocond of these inequalities is obvious. If one puts in it f=«/2, y==x/4 one has

E(x) = min E*(x) = — —CU+1)— ; 7, W ey

since for /=2

sina/2 sinm/4 | n
= il 0=aa=—.
a2 /4 2

This is equivalent to the first inequality by virtue of the relation 1-—cosa=2 sin?x/2.
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Let now «,, %,, ..., , be such a permutation of the numbers 1. 2. .... m that
the coordinates of the m dimensional vector k satisfy the inequalities

k., =k,,=...=k,_
Let further be
ky = ki +ki,  (i=1,2,....,m)

where k;, is the largest multiple of m not exceeding £,,.

We define the vector k' as follows. All its coordinates are equal to the corres-
ponding coordinates of k, save the «,’th, o,’th, ..., 2, 'th: these are A; , ki, ...,
k3, respectively.

Then by (2. 1)

(6.2) EX&)—EKYD) = —kZ, +2 Z {Ekh[%,]_ E,. {_ZE ,J}_
# 2n
—ko 42 Z E. [ ] E,. [ ]}_

er, 3 e[ ()

r::lJ 2

reEa;-a;—|

Let us denote by S; the /’th row of the right hand side of the last equality.
Then

& < 2 2 v 2
S;=—ka+2 Z{cos- " ¢+ cos 2- n—rf...—rcosk,,—nr}—
g m n m

i-1
= 2n . o BN B
_2;4:[ {COS ™ (CX.'_&;,)-F Ccos 2-—,;(5(.'_1#) + ... +cos kz; ey (o; — 3!,,)} -

-1 i—1
=—kii=2 2 Ev (—a)<—kz+2 2 {Clka—1)+1}
p=1 i u=1
by (6. 1). From this follow
S, =—ki =0

S; = (2C—1)ks,+2(1-C) = 2(1-C)

S3 = (4C-1)k;,+4(1-C) = 4(1-0C)

S; =(6C—-1)(m-=2)+5.
Hence we have
(6. 3) E(k) = E(k')
(6.4) EKk) = E(k®)+2(1-C)<E(k'®)+2
(6.5) EK) = Ek¥)+6(1-C)<=E(Kk®)+5

6.6)  E®K) = EK®)+(6C —1)(m—2)+5+6(1 —C)= E(k®) + ';’ +10.
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We divide now the set K into the following five subsets.
(i) K: it contains the only element k* defined by (2. 7).

(ii) K®: its vectors are characterized by k, <n k,,=...=k, =n.

(iii) K®: its vectors are characterized by k, =k,,<n, k, = =A =7,
(iv) K®: its vectors are characterized by k, =k,, =k, <n, A = _k,m =n
(v) K®: its vectors are characterized by k,, ékuék =k,, ‘.

Clearly K = KM+ K@+ [+ K®,
Our purpose is now to show that if mn and m =35, then the sets K, K® and
K™ contain no maximal vectors and if mln, H(m)=11/3 the subset K, too, has

no maximal element.
Suppose k€ K, Then by (6. 3) and Lemma 3 E(k)-<= E(k*).
Again, if ke K®, then

E(k)<EKk®)+2 =ki+ki+(m—-2)n+2 =

=2mn—m)+(m-2)n+2 = (n—2)m+2 < E(k*)
and similarly if ke K™, then

E(K) =EK)+5<=(n-3)ym+5<=E(Kk").
Finally if ke K, m=35, then by (6.6) and (5. 3)

E(k) < E(k®)+ 7 +10
m—1 m
= m—4m+(m—y)n + Z ',-!,H(m')+§+ 10
I=1
m
=mn—4am-+(m—4)H(m)+ 3—+10

= m+{H(M}- '}('" 3)—H(m)—1

where 7, ¥4, ..., Y- are the numbers defined in Section 5, referred to the vector
k@,

The last row is less than E(K*)=mn, if —1=H(m)=11/3 i.e. by the Table
if 2=m=153, and so via Lemma 4 Statement (C’) of § | is verified, too, for these
m’s.

§ 7. Proof of Statement (C’') in the cases m =1 and m =2

The remaining cases m =1 and m =2 can be treated quite simply. In the case
m=1k,=nfeEn,

IA

5, Q)| = lay +ar+ ... +ay,| = Vi {lay)2+ @) + ... + |ay,| }i

o G4 ¥
= l"n{z (lay|?+ Ib‘-lz)}
v=1
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and equality stands on both places only if k,=n,4a4,=a,=...=a,, b, =b,=...
o =, =0,
In the case m=2 and k, =k, =n, say,

1
> |$i, () + 83, (27)| =

s g 1+ (=1 I I I
-_— Iaz".'ﬂ4+...“'72"'— akl‘f' 2Gh+l+ 2 akl+2+ ...'+‘_2 a,u =

I
k 1 3 ES
- {[_2_1]+55(k2—k,)} {laz)2+ |ag? + ... + @z, 2

ki+k, )} n
T P L PASONLRp P = (%] 71/ 510

with equality everywhere only if k; =k, =n, n even, and a,=a, if v is even, a,=0
if v is odd and b, =0 for each v. ¥)
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*) (Note added on proof, September, 1965.) In the meantime I could find the following
partial answer to the question posed on page 92: If n=2, the sequence Ai.(1), in(1,2),
vy An(1,2, ..., [n/2]) conmsists of strietly increasing numbers.

] k 2n
Indeed denoting > Emin (ky.kq) ——-(P—q)] by Euki, ..., kn) we have
pa=1 n

j-:ll{lizt"“l{_ I) o

r

ax Eulks, .5 Kt-1) :Eu(i‘::l,...,k‘i-l),
1,....m

m

kr=0,

=1,2,..,1-1

say, and we may write . ’ e o -
Eﬂ[]qki; weey kr—i}"'E..Ul'l.kz,---.kr-l, ]) =

i H 2 2
= 2E.(K1y eeeski=1)+2+ Z {cos—x{l—g)-—coslg}.
> n

kg=0 R

If /=n/2 then each term of the sum of the right-hand side is non-negative, since cosa+cos f = 0
if x=0, f=0, a+f =m and so

21,2, coog b= 1)<{En(1, K1y oovy kb= 1)+ EnKry ooy Kt=1y DY2S

<max {Eu(1, k1, «vry ki=1), Enlksy «uy Ki-1, 1))
and, a fortiori
Ad(,2,...,1-D=<i2(1,2,..,]) (i=1,2, ..., [n2])

by the definition of A.(1,2,....1).

For the solution of another special case of the problem treated in this paper. see the
author’s forthcoming article: A property of Dirichlet’'s kernel (Magyar Tud, Akadémia Mat.
Kut. Int. Koézl., in the press).
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