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§ 1. Introduction

Let L be a residuated lattice-ordered semigroup and S a closed interval of L
which has a maximum element s. In this paper we prove a lemma and a theorem
which give some sufficient conditions in order that the mapping

xX—+X:.5 (x€S)

be an isomorphism with respect to the order relation and the operations of L.

The results of §§ 2 and 3 are needed in the proof of the lemma and the theorem.
First we consider a naturally ordered semigroup in which unique prime factorization
holds. In § 2, some consequences of these hypotheses are enumerated. In § 3, we
prove two lemmas concerning the residuals p:s (¢:s), where p(g) is a prime (primary)
element in S. These lemmas generalize some previous results of the author.

In § 5 we apply the results of §4 to the residuated lattice-ordered semigroup
of all ideals of an associative ring.

§ 2. Some consequences of unique prime factorization

Let S be a partially ordered semigroup, i. e. a set with an associative multipli-
cation and with a partial order = such that, for all a, b, ¢ (£S5) a=b implies
ac=bc and ca=ch. S will be called negatively ordered if, for all a. b (€S), ab=a
and ab=5 hold.

We shall say that S is naturally ordered') if it is negatively ordered and

2.1 a<b implies a =bx=yb for some x, y€S.
Assume that S is a partially ordered semigroup (with at least three elements)

satisfying:

*) On the 6th Austrian Mathematical Congress the author lectured on some results of this
paper.
) In FucHs [2] a positively ordered semigroup satisfying (2.1) is called naturally ordered.
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(i) S is naturally ordered and has a minimum element?) 0 and a maximum
element ?) s:

(ii) every element a€ S (0 =a—=5) may be represented as the product of a
finite number of prime elements®)

(2 2] a=p,ps...px

and two representations of an element ¢ can differ only in the order of prime factors,
that is, in S the unique prime factorization holds;

(iii) in S there exists an element z(0<z-<ys) which is not a zero-divisor.

From hypotheses (i), (ii), (iii)) we conclude in turn:

(A) The element s is the identity of S.

The element s is idempotent because s*> <=s would imply the existence of a
prime element p (€S) with s? =p <=y, which is impossible.

It suffices to prove that sp =ps=p for all primes p€ S. By (2. 1) and p <s there
exists ¢ (€ S) with p=s¢. This implies, because of 52 =s

sp=siq=sq=p.
Naturally ps=p holds too.
(B) Every prime p of S is a maximal element*) in S.%)
Let m be an element of § with p=m <5s. The property (2. 1) guarantees the
existence of an element A such that p=mh. Because of the primeness of p this
implies

h=p
and because of the negative order in S
p=h

Thus p =mp which contradicts hypothesis (ii).

(C) S is commutative.®)

In view of (A) and (ii) if suffices to prove that the prime elements of S commute.
Let p, ¢ be different primes of S. By (2. 1) there exists an element x ( € S) such that
gx =pg (< p). The prime property of p and (B) show that x =p. Therefore pg= gp.
Changing the roles of p and ¢ we get the converse inequality, whence pg=gp, in
fact.

Because of (C) every clement € S(0<a<s) can be written up to the order
of factors uniquely in the form

(2.3) a=pi'py..pir

with prime powers pi' belonging to different (pairwise commuting) bases p;.

2) We use the term ,,minimum element’” to mean an element which is smaller than any other
element. Obviously the minimum element 0 is unique and satisfies 0-a=a-0=0 for all ac S. The
meaning of ,,maximum element™ is clear. The maximum element s is in general not an identity in S.

) An element pc S (0=p=75) is said to be prime if ab=p (a, b< §) implies either a=p or b=p.

4) An element m is called maximal in S if m=m'=s (m'€8) implies m" = m.

) Here we follow the argument of SuLGEIFER [5].

“) Here we follow the argument of FuCHS—STEINFELD [3].
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(D) S is free of divisors of zero.
The assumption xy =0 (0 <=.x, y <=5) implies that 0 has at least one prime fac-
torization. Among the prime factorizations of O let us consider a shortest one:

Ozpl"‘pra

that is py ... pi—1 Pi+1---P,#0 holds for 1 =i=r. Let p denote a prime element
of S satisfying z=p where z is no divisor of zero. As p,...p,=0=z=p holds, by
(B) the prime element p must occur among p,., ....p,. E. g. let p=p,. Thus zp,...
P =pypa-.-p,=0. which contradicts hypothesis (iii).

(E) Every prime power p* (k=1.,2....) is a primary element?) in S.

Let a. b be two elements of S such that ab = p*. We can assume that 0 <=a, b <=5
and ab #0. Because of (i) and (A) there exists an element d with ab =p*d. If a=£p*
then by (ii) the prime element p must occur among the prime factors of b. Thus
b=p and so b*=pt.

§ 3. Some results on residuals

Let L be a residuated partially ordered semigroup. i. e. a partially ordered semi-
group having the following property: for every pair of elements a, b€ L there exists
a right-residual a:b€ L and a left-residual a::bc L defined by

3.1 xb=a(bx=a) ifand only if x=a:b (x=a::b).

We need to know:
(a) If L is a residuated partially ordered semigroup and inf(a, b) = al b
(a. be L) exists in L. then so do (a:x) " (b:x)., (a::x)((b::x) for all x¢L and

(3.2) (@:x)N(b:x) = (@Nb):x, (a::x)N(b::x) = (aNb)::x

(See Fuchs [2].)
(b) A residuated partially ordered semigroup L which is at the same time a
lattice is a lattice-ordered semigroup, that is,

(3.3} (@ Jb)e = aclUbe and c(a'Ub) = callch

hold for all a. b, c€ L (See FucHs [2].)
(c) If the maximum element e of a lattice-ordered semigroup L is an identity
in L, then

(3. 4) alJb = e implies a\b =abUba (a,beL),
5.9) aUb =e,alc =e imply aUbc =e (a,b,c€L)
and

(3.6) aa,...a, = a;Na,N...Na, (a;€L).

(See BirkHOFF [1] or Fucss [2].)

7) An element gc S (0=g—<=s)is called primary if ab=q and a=zq (a, b S) imply b"=gq and if
ab=gq and bzzq imply a*=gq for suitable positive integers r, 1.



110 O. Steinfeld

We remark that (3. 6) implies that L is negatively ordered.

Let L be a lattice-ordered semigroup with the minimum element 0 and maximum
element e which is an identity in L. For every element s ( € L) the interval [0, s] =S
(consisting of all elements x(€ L) with 0=x=5) is a lattice-ordered subsemigroup
of L.

Lemma 3.1. (cf. STEINFELD [4]). Let L be a residuated lattice-ordered semigroup
with the minimum element 0 and maximum element e which is an identity in L. Let
[0, 5] =S denote an interval of L. If p (€S, p#s) is a prime element in S then p:s
is a prime element in L and

3.7 (p:a)iia = p,
(3. 8) p:s = p:.s
hold.

Furtherniore p:s is the only prime element in L whose intersection with s is equal
to p. For every rc L, r(\s = p implies r =p:s. The prime p of S is a prime element
in L too if and only if p=p:s holds.

ProOOF. First we show that p:s is a prime element in L. Let m, n be elements
of L satisfying mn=p:s. By the definition of p:s we have

ms-ns=mns=p.

As ms=s, ns=s, the prime property of p in S implies ms=p or ns=p. Therefore
M=p:s Of n=p:s.
p=(p:s)(s holds trivially, so instead of (3. 7) it suffices to prove (p:s)(s=p.
The relations
((p:s)Ms)s=(p:s)s=p and s=£p

imply (p:s)(1s=p, in fact.

Let r be an element of L such that r(1s = p. This implies rs=r1s=p, thus,
r=p:s.

If r is a prime element in L with r1s=p, then because of

(p:s)s=p=r and s=Er

the relation p:s=r must hold. Thus r=p:s.

For the left residual p::s the same statements hold, thus p:s=p::s, that is
(3. 8) is true.

If p=p:s, then p is a prime element in L. If however p #p:s, then because
of (p:s)s=p, p:s=Ep and s=p the element p is not prime in L.

For the primary elements an analogous result is true.

Lemma 3. 2. Let L be a residuated lattice-ordered semigroup with the minimum
element 0 and maximum element e which is an identity in L. Let s denote an element
in the center of L. If q is a primary element of the interval [0, s]= S such that s'%£q
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Jor i=1,2, ..., then q:s is a primary element in L and
(3.9) (g:5)(1s = g,
(3. 10) g:8=q::8

hold. q:s is the only primary element in L whose intersection with s is q.
From r(\s = q (rel) it follows r=q:s. A primary element q of S is primary
in L too if and only if q=q:s.

PRrOOF. First we show that ¢:s is primary in L. Let m, n be elements of L such
that mn=gq:s. By the definition of ¢:s we obtain

ms-ns =mns=d.

If nzEq:s, that is ns=Eq, the primary property of ¢ implies (ms)*=gq for a suitable
integer K =1. As s commutes with the elements of L we can write (ms)* =mfs*=gq.
In the case k=1 we get m=gq:s. If k= 1, then m*ss*~' =g holds. Hence s*-'=£gq
implies m*s=gq, that is m*=gq:s.

Similarly mn=gq:s and m=%Eq:s imply n' = g:s for a suitable integer /=1. Thus
q:s 1s primary indeed.

Because s belongs to the center, statement (3. 10) is trivial.

As ¢=(q:s)( s is always true, we have to prove only (¢:s)()s = ¢. The relations

((g:8)Ns)s=(q:s)s=q and s'£q (i=1,2,...)

imply (¢g:s)(s=gq.

Let » be an element of L such that r[s=g¢. This implies rs=r(ls=gqg and so
r=gq.s.

Furthermore if r is primary in L, then from r(s = ¢ and s'Zq it follows
siEr (i=1,2,...). Hence (¢:s)s=qg=r implies ¢:s=r, and so r=gq:s.

If ¢=gq:s holds, then ¢ is a primary element in L. If ¢ #¢q:s, then because of
(g:s)s=gq, s'£q (i=1,2,...) and g:5=£q, the element ¢ is not primary in L.

§ 4. The mapping x—~x:s
First we shall prove

Lemma 4. 1. Let L be a residuated lattice-ordered semigroup with a minimunt
element 0 and a maximum element e which is the identity of L. Let s be an element
of L satisfying the following conditions

(x) s>2=s and for every element x¢cS=|[0,s]) the relation (x:s5)s=s(x:5)=
=(x:5)s holds,

(B) (0O:5)Us=ce.

Then
(4. 1) x—x:5 (for x€8)

is a one-to-one mapping from the lattice-ordered subsemigroup S = |0, s] onto the set
Q of all right-residuals x:s (x€S) which preserves intersections and products. *)

8) We remark that condition (ff) implies x#x:s for all xc[0, s].
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PROOF. As L is negatively ordered, x =(x:s)( s holds for every x¢S. On the
other hand, condition (x) implies (x:5)(\s = (x:5)s=x. Therefore

(4. 2) (x:9)MNs =x (for every x€5).

The implication

(4. 3) a=b = (a:5)=(b:s) 0=a,b=ys)

follows immediately from the definition of right-residuals. Conversely. because of

(4. 2). the implication

(4. 4) a:s=b:s = a=(a:s)1s=(b:s)s=b 0=a.b=ys)

holds too. (4.3) and (4.4) imply that (4. 1) is a one-to-one mapping from S onto Q.
In view of (a) we get

allb = (al\b):s=(a:s)1(b:5s) 0=a.b=5s)

and so (4. 1) is a homomorphic mapping with respect to the operation (1.
Now we can verify

(4. 5) (ab):s=(a:s)(b:s) 0=a. b=ys).
(4.2) and (2) imply
(4.6) ab = ((a:s)Ns)((b:s)s) = (a:s)s(b:s)s = (a:s5)(b:s)s* = (a:s)(b:s)s.

Hence in view of (3. 1)

4.7 (a:s)(b:s) = (ab):s.

On the other hand. ((ab):s)(b:s) = (a:s)(b:s), therefore
4.8) ((a:s)(b:s))::((ab):s) = b:s.
Furthermore ((ab):s)s=ab=(a:s)(b:s) implies

(4.9) ((a:s)(b:s))::(ab):s) =s.
From (4. 8), (4.9) and (f) we obtain

(4. 10) ((a:s)(b:s))::((ab):s)=(b:s) | Us=e
and hence

4.11) ab:s=(a:s)(b:s).

(4.7) and (4. 11) complete the proof of (4. 5) and Lemma 4. 1.
We say that in a partially ordered semigroup S the strict unique prime factori-
zation holds. if in S conditions (i), (ii), (iii) are fulfilled.

Theorem 4. 2. Let L be a residuated lattice-ordered semigroup with a minimum
element 0 and a maximum element e which is the identity of L. Ler s be an element
of L satisfying the following conditions:
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(1) the strict unigue prime factorization holds in the interval [0, s]= S,
(I (0:5)Us=e,
(I11) s is in the center of L.

Then
(4. 12) X—=+X.5 (for x€5)

is an isomorphic mapping from the lattice-ordered semigroup S onto the set Q of all
right-residuals x:s (x€S); thus the strict unigue prime factorization holds in Q too.

PROOF. As in S the assumptions (i), (i), (iii) are fulfilled, we can use the results
(A)—(E). From the conditions and (A),(C), it follows that S is a commutative
lattice-ordered subsemigroup of L with the identity s. Thus (B), (3. 4), (3.5) and
(I) imply that every element x (0 =x <=5) of S can be written uniquely in the form

(4.13) x =prepr =pirN...0py  (k;=1)

with different prime elements p,,....p, of S. In view of (E) the prime powers
pi (i=1,2,....r) are primary elements in S.

By making use of Lemma 3.2, (E). (a) and (4. 13) we obtain x = p'{‘ & S
s AP = ((p'{‘:s)ﬁs)ﬂ...ﬂ((pf’:s)ﬂs) = (pf':s)ﬂ...ﬂ(pf':s)ﬂs =
= ((p‘:'ﬂ...ﬂpf'):s)ﬂs = (x:5)(s, that is,

(4. 14) (x:9)\s = x (for all 0 =x <5).

Because of (D), 0 is a prime element of S, therefore from Lemma 3. 1 it follows
0:5=0::5. Hence 5(0:5)=5(0::5)=0=(0:5)s. In view of (a), this and (II) imply

(4. 15) 0:5)Ns = (0:5)s = 0.
Because of (s:s)()s = s one can write instead of (4. 14) more generally
(4. 14") (a:s)\s = a (for all 0 =a=ys).

Now we can prove that (I), (IT) and (IIl) imply (a) and (f).

Let » denote an element y=a:scQ (a€S). (4. 14"), (III) and (3. 6) imply
a=(a:s)(1s=ys=ys=sy=>b. Hence y=bh:s. By making use of (4. 14') again
we obtain b=(b:s)Ns=ys=(a:s){1s=a. Thus

sy=ys=b=a=yMNs (Y€ Q)
holds. Because (A) implies s> =s(1s=s, the implication

(1), (I1) and (I1I) = () and (B)
is proved.

D8
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In view of Lemma 4.1 we have to show only
(4. 16) (alUb):s=(a:s)U(b:5s) (a, b€ S).

The cases a=0 or b=0 and a=s or b=y, respectively, are trivial. Let us consider
the elements a. b (0 <=a. b =y5s) satisfying

a=p"..pr=pn (s M pt,

4.17
(hedid b=ppr = pii (1 O

(m;+n;=1; pP =5s).

First we shall prove

(4.18) a'Jb = lr[ pmin (mi,mo),

(4. 17) implies G

1] ppeemm@ UB),

i=1

aJb z.g p:_m | .‘!]l p'i" =

where

r r
a’ =‘]]l' p?i' min(mi,ni)  and A =I]Il p?[—mm(m,m)

are elements of S. As @ and b" cannot have common prime factors, because of
(B) and (3.5) @'\ Ub" = 5 holds. Thus (4. 18) is proved.
By using (4. 18) and (4. 5) we get

4.19) (@Ub):s = ( /] p;""‘[”'*-"‘)]:s = [ (p,:s)ymintnim),
i=1 i=1
On the other hand, there results

(4.20) (a:s)(b:s) = [ (pi:s)™ '-J‘HI (P28 = [] (py:s)min™um(4° ) B)
i=1 = i=1
where A" = ﬁ(p,-:s)"'" win(wnn) and B = ﬁ(pi:s)"*—"‘i“‘“*'*"*‘. By virtue of (II)
i=1 i=1

this implies as above A"/ B" = e. So statement (4. 16) has been verified.
Let us consider an element x € S (0 < x = s) written in the form (4. 13). We can
write
x:8 = (p}...pr):s = (P:9)...(plr28) = (p:)¥...(D,: 9™,

where because of Lemma 3. 1 the elements p;:s (i=1, 2, ..., r) are different prime
elements in L.

Because (4. 12) is an isomorphic mapping of § onto Q the properties (i), (ii)
and (iii) are fulfilled in Q too.

The proof of Theorem 4. 2 is thereby completed.
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§ 5. Application to ideal theory

It is known that the set of all ideals of an associative ring is a residuated lattice-
ordered semigroup. (See Fuchs [2], Third Part.) Thus we can apply the results of
§ 4 to the ideals of an associative ring.?)

Lemma 5. 1. Let a be an ideal of an associative ring R satisfying the following
conditions

(') a2=a and for every ideal v of a the relation (r:a)a=a(r:a)=al)(x:)
holds.,

(B’) (0:a)4+a = R.

Then
(5.1) r - r:a (for ideals v of a)

is a one-to-one mapping from the lattice-ordered semigroup S of all ideals of a onto
the set Q of all right ideal quotients y:a (v S) which preserves intersections and
products.

For the proof it is enough to remark that because of (f’) the ideals of a are
ideals of R too.

We shall say that strict unique prime factorization holds for the ideals of an
associative ring A4 if the following conditions are fulfilled:
(i") for the ideals a, b of 4

acDb implies a =bc=0db for some ideals ¢,d of A4;
(1i") every ideal r of 4 (0—r < A) may be represented as the product of a finite
number of prime ideals of A and two representations of v can differ only in the
order of the factors,
(1ii") 0 is a prime ideal of A.

Now we can apply Theorem 4.2 to the ideals.

Theorem 5. 2. Let a be an ideal of an associative ring R satisfying the following
conditions:

(I') the strict unique prime factorization holds for the ideals v of a.
(I") (0:a)+a = R,
(ITI") a commutes with every ideal 1 of R and Ry=yR=1 holds.

Then
r—r:a (for ideals v of a)

is an isomorphic mapping from the lattice-ordered semigroup S of all ideals v of a
onto the set Q of all (right) ideal quotients r:a (r € S).

) Naturally it would be possible to extend these results to the ideals of a semigroup or a
semiring.
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