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1. We consider the functional equation
(1) FIG(x, y), u]= H[K(x, u), L(y, u)]

of generalized distributivity, where the independent variables x, y as well as the values
of the unknown function G are elements of a set Q and the variable u is chosen
from another set P while the values of the other unknown functions F, H, K, L
belong to Q’. It is convenient to use the notations

xy=G(x,y), xocy=H(x,y),
Fx=F(x,u), Kx=K(x,u), Lx=L(x,u)
by which (1) can be written as
(1) F(xy) = KxoL,y; x,y€Q; u€P.

Using the terminology of groupoids ([2]), (1’) means that the triples of the
mappings (F,, K,, L,) are forming a system of homotopies of the groupoid (0, -)
into another groupoid (Q’, ©).

If the mappings

X K% X

are 1 —1 and onto, then we speak about isoropy. The special case F,=K,=L,
leads to homomorphism and isomorphism, respectively. If (Q’, ©) is the same
groupoid as (Q, -) then we get the notion of endotopy and autotopy, respectively.
In the present paper we reduce (1) to simpler equations. We use only certain
weakened solvability conditions for equations of the type xy =z, y= Fx, etc.
2. First we reduce (1) to the special case (Q,.)=(Q",0).

Theorem 1. Suppose that there exists at least one uy€P such that x—F,x,
K.x, Lx are 1 —1 mappings of Q onto Q', then (1) is equivalent to the functional
equation

(2) D (xy)=Y xA,y; x, y€Q; uch,
where
(3) F}::FD(DN* Ku:KOQPIH LM:LOAu

Fy, Ky, Ly being particular solutions of (1).
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ProOF. The equivalence is clear since (2) is just (1) if we substitute both sides
of (2) into F, and take into consideration that F,. K,. L, are particular solutions
of (1).

Corollary. The most general solutions of (1) are given by (3) and
(4 xoy = Fo(KgtxLgty),

where xy. ®,, ¥,, A, are arbitrary solutions of (2) and F,, Ky, L, are arbitrary
1 — 1 mappings of Q onto Q" (while the inverse mappings are denoted by the exponent
-1).

Thus it is enough to consider (2). Cf. [1,5].
3. Supposing that (Q. -) is a quasigroup. i.e. the mappings

X—+XVo. V—=Xo¥

are 1 —1 and onto for every fixed x,, y, in Q. we give a further reduction. In this
reduction the principal loop isotopes of (Q, -) play an important role. A quasi-
group having a two sided universal identity element is called a loop. The notion
of principal isotopy can be defined by (17) as a special isotopy. where F is the iden-
tical mapping. Clearly, principal isotopy is an equivalence relation as well as isotopy.
E. g. the quasigroup (Q. +) defined on QO by

(5) xb+ay = xy, X, y€Q

for fixed a, b€ Q is a principal isotope of (Q, -). This is a loop with identity 0 = ab.
This can be seen by (5) if we put x =a resp. y=5b. On the other hand. it is clear
that every principal loop isotope of (Q. +) can be defined by (5) by means of certain
fixed elements a, b. Indeed, if we have

(6) xy = yx+4iy,

then we can choose elements a, b such that ya, b are just the unit 0 of (Q. +)
and so by keeping y=»5 resp. x =a constant, we necessarily have

Vyx=xb, iy=ay.
If two quasigroups are related by (5)., then we shall use the notation
(5) (@, +) = (@, -)=",
The following lemma might be interesting in itself:

Lemma. Let (Q, +) be a loop with identity 0 and (Q, 1) = (Q, +) 9,
Then we have (Q, +) = (Q, 0. The identity of (Q, 1) is e = ¢+d and,
conversely, 0 =dc.

PrOOF. The first part of the lemma states that
(7 (x+d)O(c+y) =x+y, x,y€0,
(7) (xOe)+(d0y) = x0Oy, X, y€0

are equivalent relations.
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For example let us suppose (7). By putting x =0 resp. y =0 we obtain
dO(c+y) =y, (x+d)Oc = x, x, Y€ Q.

On the other hand, if we put here d[1y resp. x( ¢ instead of y resp. x, then, by
cancellation, we get

(8) c+(dOy) =y, (xOc)+d = x, X, y€Q.

Now, let us write x(¢ and d[y instead of x and y in (7). Then, taking also
(8) into account, we have (7).

The remaining statements of the Lemma follow from (7) and (7°) by substi-
tuting x =y =0 resp. x=y=e.

4. By means of a loop isotope (Q, +) of (Q, -) we can reduce (2) to a simpler
equation. Namely, let xy be of the form (6). where + is a loop operation. Putting
this into (2) we get

9) D (Yx+1y) = YV x+iA,)y.
By choosing AiA4,y=0 i.e. y=A,'4-10, this yields

yYx = & (Yyx+b,),
where
b,=AA1A~10

s a function of w. In a similar way we obtain also
iy = ®(a,+ Ay).
Thus ¥, and A, must be of the form
(10) Yx =vy-'o(Yyx+b,), Ax = A"'®[(a,+ ix).
Putting this back in (2) [or equivalently in (9)], we have
(11) D(s+1) = Ps+b)+Pla,+1). s5.1€0; ucP

by the notations s=yx, t=/,y.
So we have proved the following

Theorem 2. Let (Q, ) be a quasigroup with a system of autotopismus. Then
these must be of the form (6). (10), where ., i are certain 1 —1 mappings of Q onto
itself, (Q. +) is a loop, further, ®,,a,, b, and (Q. +) are related (to each other)
by (11).

In other words, the most general form of the solutions of the functional equa-
tion (2), under the suppositions of Theorem 2, is given by (6), (10), where y, A are
arbitrary 1 —1 and onto mappings while @,, a,. b, are arbitrary solutions of (11)
in a loop (Q. +).

Remark. (11) is equivalent to

(12) D (x[y) = DX+ D,), X, y€0; uechk,

D 12
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where we have (Q, (1) = (Q, + )bl j e,
(13) s+t =(s+b,)0(a,+1), 5, 1€Q; uch.

This can be seen by introducing the variables x = s+b,,y = a,+1.
Observe that the operation x[ ]y may depend on w. This is a consequence of
its definition (13). Observe further that (12)—(13) imply

b,0a,=0, a,+b, =¢, = 9,0

(see also the lemma proved above). Therefore, if @, is a solution for a given (1, @,,
then b, is already determined.

5. Without supposing the invertibility of the mappings we can prove only
the following

Theorem 3. Suppose that (Q, -) is a quasigroup the endotopisms of which are
the triples (b, ¥,. A,), i. e. (2) is fulfilled. Then ®, is a homotopism of (Q, +) =
= (0, ) jnto (Q, O) = (Q, +)Pua Aub],

In other words, then the functional equation
(129 o (x+y) =S x0O09,), X, y€EQ; ucP

must be fulfilled (cf. [6]), where (Q, +) is defined by (5) and (Q, [7) is defined by
a similar equation:
x¥b0(A@)y =xy, x,y€0.

PrOOF. By putting x =a resp. y=»b into (2) we get
D (ay)=Y aA,. D (xb)=¥ xAb
from which we can see the connection between @ an ¥ resp. @ and A. Thereafter

we can verify (12°) so that we write xb and ay instead of x and y, respectively. In
fact, then
@ (xb+ay) = @,(xb) [P (ay)
is a consequence of
P (xy)=¥ xA,y=Y xAbO Y aAb,

if we take the definitions of (Q, +) and (Q, [J) into account.

Observe that there (Q. +) and (Q, (1), being loop isotopes of the same (Q. -),
are principal loop isotopes of each other. Thus we can find certain elements a,. b,
such that (Q, 1) = (Q, + )b | i. e., these loops satisfy an equation of the form
(13).

Observe further that we can express the operation [) from (12°), supposed
that x —@®,x is invertible. Then (13) implies

(11) D (s+1) = O s+b)+ P Na, +1), s5.t€Q; ucPk.

6. By the above reduction we have reduced (1) i. e. (2) to (11) resp. to (12)—
(13). Now let us express the orioginal functions figuring in (1) by means of the
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new functions:

F.x = Fy® x,

xy = Fo(Ko 'xLo ' y) = Fo(K, ' x+ Ly ' y),
K,x = Ko¥,x = Ko¥ ' @,(yx+b,),

Lx= LoA X = LgA 19 (a,+ 1x).

(14)

It is easy to verify that (6), (14) really satisfy (1) with arbitrary Fo Ko, Ly, ¥, A
and with an arbitrary loop operation +, further, with arbitrary @,, a,, b, satisfying
(11). Hence the most general form of the solutions can be constructcd as follows:
we choose arbitrary (1—1 and onto) mappings F,, K, Ly. ¥, 4;

" we choose an arbitrary loop (Q., +);
we define the sets A4, BE Q with the property
(ﬂ)(Q 1) = (Q, +)“* is isomorphic to (Q, +) for every ac A, b<B;
we choose arbitrary mappings a,:P—~A, b,: P —B;
5‘“ we choose arbitrary isomorphisms @,:(Q, + )aubd —~ (Q, +).

bJI'\J'—'

Note that 4, B are not empty since they contain at least the identity element
0 of (Q, +), (Q.10) =(Q, +)%0 = (Q, +) being certainly isomorphic to
(Q, +). It is an open question how to find the sets A, B having the property (n)
for a given loop (Q, +). If e. g. (Q, +) is a group, then 4 =B= Q. Indeed, then
all the isotopes (Q, (1) = (Q, + )« are isomorphic groups.

7. Finally, in the special case K,=L, we show a reduction theorem under
suppositions of another type.

Theorem 4. Let (Q, ) be a grupoid for which there exists at least one ccQ
such that

(1) u—®,[cc) is a 1 —1 mapping of P onto Q,;
(ii) u-—~Y.c is onto Q.

Then the most general form of the solutions of the functional equation

(15) P (xy)=Y¥Y x¥., ), X, yeQ; ucpP
is

(16) Wy = 8100,

(17) xy = Ox+0y,

where (Q, +) is an arbitrary groupoid, 0 is an arbitrary 1 —1 and onto mapping of
O, further, @, is an arbitrary endomorphism of (Q, +) restricted only by (i) and (ii).

PrROOF. With x=y=c¢ (15) gives that
u—- Pcc)=¥c¥.c=0¥.c
is a 1 —1 mapping onto Q, consequently,

s —+ Os=s8
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must be onto and ¥,c must be 1 —1. But, by (ii), # - ¥,c is onto therefore it has an
inverse. Thus it follows that 0 too has an inverse mapping.
On the other hand, (15) with x =y gives

¢ 0x=0%,x
and this is equivalent to (16).
Let us substitute (16) into (15) then it becomes

D (xy)=(0"1,0x)(0 ', 0y)
i. e., writing 0~ 'x, 01y instead of x and y, respectively,
D0 xO01y)=(0"1Dx)O0" ' D,y).
But this means that @, is an endomorphism of the groupoid (Q, +) defined by

x4y =0"1x0"1y
i.e. by (17).
Conversely, it is easy to verify that (16) —(17) satisfy (15) if @, is an endo-
morphism. This completes proof of the theorem.
Note that (Q, +) is idempotent as we have

X+x =0"1x0"'1x=00"'x = x

for every x € Q. However, this does not play any role in the form (16)—(17) of the
solution as they satisfy (15) also with non-idempotent (Q, +).
Under the suppositions of theorems | and 4 we can get the solution of

F(xy) = KxoK,y, x,y€Q; ucP
in the form
xy = 0x+0y, xoy = Fo(Kgix+ Kgzty),

Fx = Fob,x, Kpx = K,0-1®0x,

where F,, K,, 0 are arbitrary (1 —1 and onto) mappings. further, (Q. +) is an
arbitrary groupoid with endomorphisms @, restricted by the suppositions of the
respective theorems (cf. [4]).

Bibliography

[1] J. AczfL, Vorlesungen iiber Funktionalgleichungen und ihre Anwendungen, Basel— Stuttgart,
1960.

[2] V. D. BeLousow, Systems of quasigroups, Uspekhi mat. nauk XX, 1 (121), (1965), 75— 146.

[3] M. Hosszu, On the functional equation of distributivity, Acta Math. Acad. Sci. Hungar. 4 (1953),
157—167.

[4] M. HosszU, A generalization of the functional equation of distributivity, Acta Sci. Math. Szeged
20 (1959), 67—80.

[5] M. HosszU, Functional equations and algebraic methods in the theory of geometric objects
Publ. Math. Debrecen S (1958), 294329,

[6] M. HosszU, Uber eine Verallgemeinerung der Distributivitiitsgleichung, Acta Sci. Math Szeged
26 (1965), 103 —196.

( Received August 22, 1964.)



